scholarly journals Simultaneous Determination of Multiple Active Components from Bushen Pills and Application in a Pharmacokinetic Study in Rats

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Houli Li ◽  
Benjie Wang ◽  
Guiyan Yuan ◽  
Xiaoyan Liu ◽  
Jing Huang ◽  
...  

Bushen Pills (BSPs), as a traditional Chinese medicine (TCM), is widely used in clinic to enrich Yang, nourish Yin, stem essence, and strengthen kidneys. Two chromatographic methods, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), were applied to analyze the multiple active components of BSPs in dosage form for quality evaluation and in rat plasma for pharmacokinetics study, respectively. Three active constituents of BSPs, including paeoniflorin (PF), berberine hydrochloride (BBR), and schizandrin (SCH), were simultaneously determined by the established LC-MS method with electrospray ionization (ESI) in positive selected ion monitoring (SIM) mode at m/z 503.1, 336.0, and 455.2. The contents of PF, BBR, and SCH were (6.112 ± 0.166) mg/g, (335.1 ± 14.95) μg/g, and (5.867 ± 0.136) μg/g in BSPs. On this basis, PF and BBR were selected as targeted analytes for the pharmacokinetic study of BSPs in rats. Memantine hydrochloride was used as an internal standard (IS), and the plasma samples were processed by liquid-liquid extraction with ethyl acetate. All the analytes were separated on a C18 reversed phase column, eluted with a mobile phase consisting of acetonitrile-formic acid (0.01%) (25 : 75, v/v), and detected by ESI in the selected ion mode with multiple reaction monitoring (MRM). The target fragment ions were m/z 525.3 ⟶ 449.5 for PF, 336.2 ⟶ 320.2 for BBR, and 180.1 ⟶ 163.1 for IS. The linear ranges of PF and BBR were 5–500 ng/mL and 0.1–20 ng/mL with good linearity (r2 > 0.99). No obvious matrix effect was observed, and acceptable accuracy, precision, recovery, and stability were obtained. The proposed method has been successfully applied to the pharmacokinetic study of BSPs in rats after a single dose.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yan Du ◽  
Hongliang Su ◽  
Jie Cao ◽  
Zhiwen Wei ◽  
Yujin Wang ◽  
...  

Male Sprague-Dawley rats (n=18) were randomly divided into three groups: a saline group (20 mL/kg by gavage), a ketamine (KET) group (100 mg/kg by gavage), and a KET (the same routes and doses) combined with levo-tetrahydropalmatine (l-THP; 40 mg/kg by gavage) group (n=6). Blood samples were acquired at different time points after drug administration. A simple and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to determine the concentrations of KET and its metabolite, norketamine (NK), in rat plasma. Chromatographic separation was achieved using a BEH C18 column (2.1 mm×50 mm, 1.7 μm) with chlorpheniramine maleate (Chlor-Trimeton) as an internal standard (IS). The initial mobile phase consisted of acetonitrile–water with 0.1% methanoic acid (80 : 20, v/v). The multiple reaction monitoring (MRM) modes of m/z 238.1→m/z 179.1 for KET, m/z 224.1→m/z 207.1 for NK, and m/z 275→m/z 230 for Chlor-Trimeton (IS) were utilized to conduct a quantitative analysis. Calibration curves of KET and NK in rat plasma demonstrated good linearity in the range of 2.5–500 ng/mL (r>0.9994), and the lower limit of quantification (LLOQ) was 2.5 ng/mL for both. Moreover, the intra- and interday precision relative standard deviation (RSD) of KET and NK were less than 4.31% and 6.53%, respectively. The accuracies (relative error) of KET and NK were below -1.41% and -6.07%, respectively. The extraction recoveries of KET and NK were more than 81.23±3.45% and 80.42±4.57%, respectively. This sensitive, rapid, and selective UPLC-MS/MS method was successfully applied to study the pharmacokinetic effects of l-THP on KET after gastric gavage. The results demonstrated that l-THP could increase the bioavailability of KET and promote the metabolism of KET. The results showed that l-THP has pharmacokinetics effects on KET in rat plasma.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Thejomoorthy Karavadi ◽  
B. R. Challa

A selective, sensitive, and high-throughput liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) method has been developed and validated for the quantitation of darifenacin in rat plasma. Sample clean up involved liquid-liquid extraction (LLE) and used 100 μL of rat plasma. Zorbax, SB C18, 4.6×75 mm, 3.5 μm particle size analytical column using 10 mM ammonium acetate buffer (pH 5) and methanol (10 : 90, v/v) as the mobile phase was used. The parent → product ion transitions for the drug (m/z 427.3 → 147.3) and IS (m/z 431.4 → 151.2) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and positive ion mode. The method was validated over the concentration range of 10.00–20000.00 pg/mL for darifenacin. The method was successfully applied into a pharmacokinetic study in rat plasma under fasting conditions.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2037 ◽  
Author(s):  
Subindra Kazi Thapa ◽  
Mahesh Upadhyay ◽  
Tae Hwan Kim ◽  
Soyoung Shin ◽  
Sung-Joo Park ◽  
...  

Desoxo-narchinol A is one of the major active constituents from Nardostachys jatamansi, which has been reported to possess various pharmacological activities, including anti-inflammatory, antioxidant, and anticonvulsant activity. A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of desoxo-narchinol A in two different biological matrices, i.e., rat plasma and mouse plasma, using sildenafil as an internal standard (IS). The method involved simple protein precipitation with acetonitrile and the analyte was separated by gradient elution using 100% acetonitrile and 0.1% formic acid in water as a mobile phase. The MS detection was performed with a turbo electrospray in positive ion mode. The lower limit of quantification was 10 ng/mL in both rat and mouse plasma. Intra- and inter-day accuracies were in the ranges of 97.23–104.54% in the rat plasma and 95.90–110.11% in the mouse plasma. The precisions were within 8.65% and 6.46% in the rat and mouse plasma, respectively. The method was applied to examine the pharmacokinetics of desoxo-narchinol A, and the oral bioavailability of desoxo-narchinol A was 18.1% in rats and 28.4% in mice. The present results may be useful for further preclinical and clinical studies of desoxo-narchinol A.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1600 ◽  
Author(s):  
Essam Ezzeldin ◽  
Muzaffar Iqbal ◽  
Yousif A. Asiri ◽  
Azza A Ali ◽  
Prawez Alam ◽  
...  

Baricitinib, is a selective and reversible Janus kinase inhibitor, is commonly used to treat adult patients with moderately to severely active rheumatoid arthritis (RA). A fast, reproducible and sensitive method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantification of baricitinib in rat plasma has been developed. Irbersartan was used as the internal standard (IS). Baracitinib and IS were extracted from plasma by liquid–liquid extraction using a mixture of n-hexane and dichloromethane (1:1) as extracting agent. Chromatographic separation was performed using Acquity UPLC HILIC BEH 1.7 µm 2.1 × 50 mm column with the mobile phase consisting of 0.1% formic acid in acetonitrile and 20 mM ammonium acetate (pH 3) (97:3). The electrospray ionization in the positive-mode was used for sample ionization in the multiple reaction monitoring mode. Baricitinib and the IS were quantified using precursor-to-production transitions of m/z 372.15 > 251.24 and 429.69 > 207.35 for baricitinib and IS, respectively. The method was validated according to the recent FDA and EMA guidelines for bioanalytical method validation. The lower limit of quantification was 0.2 ng/mL, whereas the intra-day and inter-day accuracies of quality control (QCs) samples were ranged between 85.31% to 89.97% and 87.50% to 88.33%, respectively. Linearity, recovery, precision, and stability parameters were found to be within the acceptable range. The method was applied successfully applied in pilot pharmacokinetic studies.


2018 ◽  
Vol 25 (4) ◽  
pp. 372-380 ◽  
Author(s):  
Sireesha Dodda ◽  
Ajitha Makula ◽  
Srinivasa R Polagani ◽  
Raj N Kandhagatla

A method for bioanalysis of pentoxifylline in human plasma was developed using liquid chromatography–tandem mass spectrometry, which is simple, specific, and sensitive. Pentoxifylline D5 was used as the internal standard. Employing only 100 µl of human plasma, processing was done with solid-phase extraction technique. The analyte and the internal standard were separated from endogenous components on Ace phenyl column using a mixture of 5 mM ammonium acetate buffer and high performance liquid chromatography grade acetonitrile (60:40, v/v) as mobile phase at a flow rate of 1 ml/min. The linearity of the method was in the range of 3–1200 ng/ml with r2 > 0.99. Positive ion MRM mode was used for the detection of the analyte and the internal standard. The method was validated as per the US Food and Drug Administration guidelines and the results were within the acceptance limits. The proposed method was applied for comparative pharmacokinetic study of pentoxifylline after oral administration of 400 and 600 mg tablets to South Indian male subjects under fed conditions.


2009 ◽  
Vol 55 (6) ◽  
pp. 1196-1202 ◽  
Author(s):  
Thomas M Annesley ◽  
Larry T Clayton

Abstract Background: Iohexol is an iodinated contrast dye that has been shown to be useful in the estimation of glomerular filtration rate (GFR) in patients with suspected renal insufficiency. We developed and validated an ultraperformance liquid chromatography (UPLC)–triple quadrupole mass spectrometry (MS/MS) assay for quantifying iohexol in human serum. Methods: Sample preparation involved dilution of 50 μL serum with 400 μL water, followed by protein precipitation with zinc sulfate and methanol containing the structural analog ioversol as the internal standard. After 1:20 dilution of the supernatant with water, 5 μL was injected into the UPLC-MS/MS system. Chromatography was performed using a Waters Oasis HLB 5-μm particle size, 2.1 × 20 mm column maintained at 50 °C. We used a 1-step acetonitrile/0.1% formic acid gradient to elute the compounds of interest at a common retention time of 0.96 min. The multiple reaction monitoring transitions used for integration and quantification were m/z 821.7→803.7 for iohexol and m/z 807.9→589.0 for ioversol in the electrospray positive ionization mode. Results: The assay was linear from 2.5 mg/L (lower limit of quantification) to 1500 mg/L iohexol, with a mean extraction efficiency of >99%. Recovery of nominal target concentrations was 99%–102%. Interassay imprecision ranged from 7.9% at a concentration of 2.5 mg/L to 4.1% at 1000 mg/L. Ion suppression studies showed no matrix effects on the ionization of the 2 compounds. Conclusions: This rapid UPLC-MS/MS method can be successfully used for quantifying iohexol in human serum. .


Sign in / Sign up

Export Citation Format

Share Document