scholarly journals Ultraperformance Liquid Chromatography–Tandem Mass Spectrometry Assay for Iohexol in Human Serum

2009 ◽  
Vol 55 (6) ◽  
pp. 1196-1202 ◽  
Author(s):  
Thomas M Annesley ◽  
Larry T Clayton

Abstract Background: Iohexol is an iodinated contrast dye that has been shown to be useful in the estimation of glomerular filtration rate (GFR) in patients with suspected renal insufficiency. We developed and validated an ultraperformance liquid chromatography (UPLC)–triple quadrupole mass spectrometry (MS/MS) assay for quantifying iohexol in human serum. Methods: Sample preparation involved dilution of 50 μL serum with 400 μL water, followed by protein precipitation with zinc sulfate and methanol containing the structural analog ioversol as the internal standard. After 1:20 dilution of the supernatant with water, 5 μL was injected into the UPLC-MS/MS system. Chromatography was performed using a Waters Oasis HLB 5-μm particle size, 2.1 × 20 mm column maintained at 50 °C. We used a 1-step acetonitrile/0.1% formic acid gradient to elute the compounds of interest at a common retention time of 0.96 min. The multiple reaction monitoring transitions used for integration and quantification were m/z 821.7→803.7 for iohexol and m/z 807.9→589.0 for ioversol in the electrospray positive ionization mode. Results: The assay was linear from 2.5 mg/L (lower limit of quantification) to 1500 mg/L iohexol, with a mean extraction efficiency of >99%. Recovery of nominal target concentrations was 99%–102%. Interassay imprecision ranged from 7.9% at a concentration of 2.5 mg/L to 4.1% at 1000 mg/L. Ion suppression studies showed no matrix effects on the ionization of the 2 compounds. Conclusions: This rapid UPLC-MS/MS method can be successfully used for quantifying iohexol in human serum. .

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1600 ◽  
Author(s):  
Essam Ezzeldin ◽  
Muzaffar Iqbal ◽  
Yousif A. Asiri ◽  
Azza A Ali ◽  
Prawez Alam ◽  
...  

Baricitinib, is a selective and reversible Janus kinase inhibitor, is commonly used to treat adult patients with moderately to severely active rheumatoid arthritis (RA). A fast, reproducible and sensitive method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantification of baricitinib in rat plasma has been developed. Irbersartan was used as the internal standard (IS). Baracitinib and IS were extracted from plasma by liquid–liquid extraction using a mixture of n-hexane and dichloromethane (1:1) as extracting agent. Chromatographic separation was performed using Acquity UPLC HILIC BEH 1.7 µm 2.1 × 50 mm column with the mobile phase consisting of 0.1% formic acid in acetonitrile and 20 mM ammonium acetate (pH 3) (97:3). The electrospray ionization in the positive-mode was used for sample ionization in the multiple reaction monitoring mode. Baricitinib and the IS were quantified using precursor-to-production transitions of m/z 372.15 > 251.24 and 429.69 > 207.35 for baricitinib and IS, respectively. The method was validated according to the recent FDA and EMA guidelines for bioanalytical method validation. The lower limit of quantification was 0.2 ng/mL, whereas the intra-day and inter-day accuracies of quality control (QCs) samples were ranged between 85.31% to 89.97% and 87.50% to 88.33%, respectively. Linearity, recovery, precision, and stability parameters were found to be within the acceptable range. The method was applied successfully applied in pilot pharmacokinetic studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Wang ◽  
Er-min Gu ◽  
Xiaoxiang Du ◽  
Ren-ai Xu ◽  
Guanyang Lin

The contribution of the metabolites of linezolid to the associated myelosuppression is unknown in patients who are renal impairment. In this research, the purpose of our experiment was to explore and develop a quick and robust ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the determination of linezolid and its metabolite PNU-142300 in human serum simultaneously. The analytes were prepared using a simple and convenient approach with acetonitrile for protein crash, and then separated from the matrix on a Waters Acquity Ultra performance liquid chromatography (UPLC) BEH C18 (2.1 mm × 50 mm, 1.7 μm) column in a program of gradient elution, where the mobile phase was consisted of water with 0.1% formic acid and acetonitrile, and was placed at 0.40 ml/min flow rate. Multiple reaction monitoring (MRM) was employed and conducted for UPLC-MS/MS detection with ion transitions at m/z 338.01 → 296.03 for linezolid, m/z 369.96 → 327.98 for PNU-142300 and m/z 370.98 → 342.99 for tedizolid (Internal standard, IS), respectively. This method had good linearity respectively in the calibration range of 0.01–20 μg/ml for linezolid, and 0.05–100 μg/ml for PNU-142300. In the intra- and inter-day, the precision of linezolid and PNU-142300 was below 14.2%, and the accuracy in this method was determined to be from −9.7 to 12.8%. In addition, recovery and matrix effect of the analytes were all found to be acceptable, and the analytes during the assay and storage in serum samples were observed to be stable. The novel optimized UPLC-MS/MS assay was also successfully employed to determine the concentration levels of linezolid and PNU-142300 in human serum. The results showed that linezolid-associated myelosuppression occurs more frequently in patients with renal insufficiency, and the metabolite-to-parent concentration ratio of PNU-142300 is predicted to reduce this toxicity of myelosuppression.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 123 ◽  
Author(s):  
Lingzhi Wang ◽  
Do-Dang Phan ◽  
Nicholas Syn ◽  
Xiaoqiang Xiang ◽  
Hongyan Song ◽  
...  

A sensitive and robust liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of nimbolide in mouse serum. Exemestane was used as the internal standard (IS). Here, we employed acetonitrile-based protein precipitation (PPT) for serum sample preparation, and performed chromatographic separation using an ODS Hypersil C18 column (100 mm × 2.1 mm, 5 µm) with gradient elution (0.1% formic acid in water vs 100% acetonitrile). The run time was 6 min. Instrumental analysis was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the multiple-reaction monitoring (MRM) under positive mode. A good linear calibration was achieved in the 5–1000 ng/mL range. The intra- and inter-day precisions for nimbolide were ≤12.6% and ≤13.9% respectively. Intra-day accuracy ranged from 96.9–109.3%, while inter-day accuracy ranged from 94.3–110.2%. The matrix effect of nimbolide, detected but consistent at low and high concentrations, do not affect linearity of standard curve. In conclusion, we have developed and validated a sensitive analytical method for determination of a novel natural compound nimbolide in mouse serum, and it has been successfully applied to our preclinical study in investigating the pharmacokinetic properties of nimbolide, which could greatly facilitate the preclinical development of the promising lead compound for anticancer therapy.


2015 ◽  
Vol 59 (9) ◽  
pp. 5675-5680 ◽  
Author(s):  
Jan-Willem C. Alffenaar ◽  
Mathieu Bolhuis ◽  
Kai van Hateren ◽  
Marieke Sturkenboom ◽  
Onno Akkerman ◽  
...  

ABSTRACTBedaquiline, a diarylquinoline for the treatment of multidrug-resistant tuberculosis (TB), relies on exposure-dependent killing. As data on drug exposure in specific populations are scarce, pharmacokinetic studies may be of interest. No simple and robust validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been reported to date. Therefore, a new method using a quadrupole mass spectrometer was developed for analysis of bedaquiline andN-monodesmethyl bedaquiline (M2) in human serum, using deuterated bedaquiline as the internal standard. The calibration curve was linear over a range of 0.05 (lower limit of quantification [LLOQ]) to 6.00 mg/liter for both bedaquiline and M2, with correlation coefficient values of 0.997 and 0.999, respectively. The calculated accuracy ranged from 1.9% to 13.6% for bedaquiline and 2.9% to 8.5% for M2. Within-run precision ranged from 3.0% to 7.2% for bedaquiline and 3.1% to 5.2% for M2, and between-run precision ranged from 0.0% to 4.3% for bedaquiline and 0.0% to 4.6% for M2. Evaluation of serum concentrations in a patient receiving bedaquiline showed high levels at the end of treatment, reflecting accumulation of the drug. More observational pharmacokinetic data are needed to relate altered drug concentrations to clinical outcome or adverse drug effects. A simple LC-MS/MS method to quantify bedaquiline and M2 levels in human serum using a deuterated internal standard has been validated. This method can be used in clinical studies and daily practice.


Author(s):  
Revathi Naga Lakshmi Ponnuri ◽  
Prahlad Pragallapati ◽  
Ravindra N ◽  
Venkata Basaveswara Rao Mandava

  Objective: The main objective of the work was to develop a straightforward, fast and selective liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay for determination of pioglitazone (PG), keto pioglitazone (KPG), and hydroxy pioglitazone (HPG) in human plasma and to validate as per recent guidelines.Methods: Analyte and the internal standard (IS) were extracted from plasma through liquid-liquid extraction and chromatographed on a Xterra RP18, 100×4.6, 5 μ column using methanol: acetonitrile mixture and 10 mM Ammonium formate buffer (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. The API-3200 Q Trap LC-MS/MS instrument in multiple reaction monitoring mode was used for detection. Diphenhydramine was utilized as IS.Results: The linearity was established in the concentration range of 20.15-1007.58 ng/mL for PG, 20.35-1017.58 ng/mL for KPG, and 19.68-491.22 ng/mL for HPG in human plasma. All the validation parameters were well within the acceptance limits.Conclusion: A new simple LC-MS/MS method was developed for the determination of PG, KPG, and HPG in human plasma. This method can be easily applied for the estimation of pharmacokinetic parameters of PG, KPG, and HPG.


Author(s):  
BG Keevil ◽  
SJ McCann ◽  
DP Cooper ◽  
MR Morris

Background: The immunosuppressive drug tacrolimus has complex and unpredictable pharmacokinetics, therefore regular monitoring is required in patients receiving tacrolimus therapy. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring tacrolimus concentrations in whole blood and have compared it with a microparticle enzyme immunoassay. Methods: For the LC-MS/MS assay, samples were prepared in a 96-deep well microtitre plate by adding 10 µL of blood to 40 µL of 0·1 mol/L zinc sulphate solution. Proteins were precipitated by adding 100 µL acetonitrile containing ascomycin internal standard. After vigorous mixing and centrifugation, 20 µL of the supernatant was injected into the LC-MS/MS system. A C18 cartridge (3 mm × 4 mm) was eluted with a step gradient of 50% to 100% methanol containing 2 mmol/L ammonium acetate and 0·1% (v/v) formic acid, at 0·6 mL/min. The column was maintained at 55°C. Results: The retention times were 0·98 min for ascomycin and 0·98 min for tacrolimus. Cycle time was 2·5 min, injection to injection. The analytes were monitored using a Quattro micro tandem mass spectrometer operated in multiple reaction monitoring mode using the following transitions: m/z821 > 768 (tacrolimus) and m/z809 > 756 (ascomycin). The limit of quantitation was 0·5 µg/L and the assay was linear up to 30 µg/L. Precision of the method, over the concentration range 2·5-15·0 µg/L, was < 7% within-batch and < 6% between-batch. Total time to analyse 24 samples including result generation was 90 min. Conclusion: We conclude that the LC-MS/MS method is quick, precise and robust and will provide a fast turn around of results for the transplant physician.


Author(s):  
DEEPAN T ◽  
BASAVESWARA RAO MV ◽  
DHANARAJU MD

Objective: A validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for canagliflozin in human plasma along with stability studies. Methods: The chromatographic separation of canagliflozin was performed on Zorbax XDB phenyl (75 × 4.6 mm, 3.5 mm) using methanol:acetate buffer (80:20 v/v) at a flow rate of 1.0 ml/min. The LC–MS/MS system consists of API 4000 triple quadrupole mass spectrometer equipped with turbospray ionization and an AS8020 automatic sample injector. Results: The retention time of canagliflozin was 1.15 min and total runtime was 2 min. The multiple reaction monitoring was 462.5/267.1 (m/z) for canagliflozin and 466.4/267.2 (m/z) for internal standard (canagliflozin D4), respectively. The method was linear over the range of 10–7505 ng/ml. The calculated slope ranged from 0.0451 to 0.0502 and intercepts from 0.0102 to 0.0456 with coefficients of the determination of 0.9970. The overall mean recovery of internal standard and canagliflozin was 76.66 and 79.77, respectively. Conclusion: The method was successfully validated and it was found to be within the limits for accuracy, precision, and linearity and it is stable under analytical conditions used.


Author(s):  
Anh Le Minh ◽  
Tung Nguyen Thach ◽  
Nam Nguyen Nhu ◽  
Dong Bui Quang ◽  
Dat Pham Thanh ◽  
...  

A rapid extraction method was developed and validated for esomeprazole determination in rabbit plasma by liquid chromatography tandem mass spectrometry (LC&ndash;MS/MS). Esomeprazole in rabbit plasma was extracted and then cleaned up using QuEChERS technique. The analyte was separated using C18 column and quantified by MS/MS detector. Pantoprazole was used as the internal standard. The positive ESI source was used in this study together with the multi&shy;-reactive ion monitoring mode. The validity of the method has been confirmed in accordance with ICH Harmonized guidelines on bioanalytical method validation. The method showed good specificity, good stability, with the linearity varying from 0.1 ng/mL to 20 ng/mL, the lower limit of quantification was 0.1 ng/mL, the accuracy and precision were within 85% and 115% which achieved the ICH Harmonized guideline requirements, FDA guideline and AOAC International requirements. The method has been applied to quantify the concentration of esomeprazole in rabbit plasma, and then to compare the bioavailability of two preparations containing esomeprazole.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yan Du ◽  
Hongliang Su ◽  
Jie Cao ◽  
Zhiwen Wei ◽  
Yujin Wang ◽  
...  

Male Sprague-Dawley rats (n=18) were randomly divided into three groups: a saline group (20 mL/kg by gavage), a ketamine (KET) group (100 mg/kg by gavage), and a KET (the same routes and doses) combined with levo-tetrahydropalmatine (l-THP; 40 mg/kg by gavage) group (n=6). Blood samples were acquired at different time points after drug administration. A simple and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to determine the concentrations of KET and its metabolite, norketamine (NK), in rat plasma. Chromatographic separation was achieved using a BEH C18 column (2.1 mm×50 mm, 1.7 μm) with chlorpheniramine maleate (Chlor-Trimeton) as an internal standard (IS). The initial mobile phase consisted of acetonitrile–water with 0.1% methanoic acid (80 : 20, v/v). The multiple reaction monitoring (MRM) modes of m/z 238.1→m/z 179.1 for KET, m/z 224.1→m/z 207.1 for NK, and m/z 275→m/z 230 for Chlor-Trimeton (IS) were utilized to conduct a quantitative analysis. Calibration curves of KET and NK in rat plasma demonstrated good linearity in the range of 2.5–500 ng/mL (r>0.9994), and the lower limit of quantification (LLOQ) was 2.5 ng/mL for both. Moreover, the intra- and interday precision relative standard deviation (RSD) of KET and NK were less than 4.31% and 6.53%, respectively. The accuracies (relative error) of KET and NK were below -1.41% and -6.07%, respectively. The extraction recoveries of KET and NK were more than 81.23±3.45% and 80.42±4.57%, respectively. This sensitive, rapid, and selective UPLC-MS/MS method was successfully applied to study the pharmacokinetic effects of l-THP on KET after gastric gavage. The results demonstrated that l-THP could increase the bioavailability of KET and promote the metabolism of KET. The results showed that l-THP has pharmacokinetics effects on KET in rat plasma.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Houli Li ◽  
Benjie Wang ◽  
Guiyan Yuan ◽  
Xiaoyan Liu ◽  
Jing Huang ◽  
...  

Bushen Pills (BSPs), as a traditional Chinese medicine (TCM), is widely used in clinic to enrich Yang, nourish Yin, stem essence, and strengthen kidneys. Two chromatographic methods, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), were applied to analyze the multiple active components of BSPs in dosage form for quality evaluation and in rat plasma for pharmacokinetics study, respectively. Three active constituents of BSPs, including paeoniflorin (PF), berberine hydrochloride (BBR), and schizandrin (SCH), were simultaneously determined by the established LC-MS method with electrospray ionization (ESI) in positive selected ion monitoring (SIM) mode at m/z 503.1, 336.0, and 455.2. The contents of PF, BBR, and SCH were (6.112 ± 0.166) mg/g, (335.1 ± 14.95) μg/g, and (5.867 ± 0.136) μg/g in BSPs. On this basis, PF and BBR were selected as targeted analytes for the pharmacokinetic study of BSPs in rats. Memantine hydrochloride was used as an internal standard (IS), and the plasma samples were processed by liquid-liquid extraction with ethyl acetate. All the analytes were separated on a C18 reversed phase column, eluted with a mobile phase consisting of acetonitrile-formic acid (0.01%) (25 : 75, v/v), and detected by ESI in the selected ion mode with multiple reaction monitoring (MRM). The target fragment ions were m/z 525.3 ⟶ 449.5 for PF, 336.2 ⟶ 320.2 for BBR, and 180.1 ⟶ 163.1 for IS. The linear ranges of PF and BBR were 5–500 ng/mL and 0.1–20 ng/mL with good linearity (r2 > 0.99). No obvious matrix effect was observed, and acceptable accuracy, precision, recovery, and stability were obtained. The proposed method has been successfully applied to the pharmacokinetic study of BSPs in rats after a single dose.


Sign in / Sign up

Export Citation Format

Share Document