scholarly journals Experimental Study on the Active Earth Pressure of Narrow Cohesionless Backfills against Rigid Retaining Wall under the Translation Mode

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Li-Wei Xu ◽  
Yu-Jian Lin

In engineering, the new retaining walls are often constructed near the existing structure owing to the space limitation. The backfill behind the retaining wall is narrow, which causes an overestimation in the active earth pressure by using Coulomb’s earth pressure theory. In previous studies, experimental observations for the failure modes of narrow backfills are still rare. To confirm the failure mode of the narrow backfill, the experimental method and the geotechnical particle image velocimetry method are employed to observe the active failure process of the cohesionless narrow backfill with various widths under the translation mode. The experimental results revealed that the decrease in the length of the backfill width led to the increase in the inclined angle of the sliding surface. When the backfill width was sufficiently small, the sliding surface developed from the wall toe to another wall face, and then another sliding surface occurred as a reflection. In addition, the active earth pressure of the narrow backfill is significantly smaller than that calculated using Coulomb’s method. The active failure calculation models are established based on the experimental results. The active earth pressure of the narrow cohesionless backfill under the translation mode is derived by using the limit equilibrium methods. The proposed method was validated by comparing with the previous method and the experimental data.

2021 ◽  
Author(s):  
Jun-feng Jiang ◽  
Qi-hua Zhao ◽  
Shuairun Zhu ◽  
Sheqin Peng ◽  
Yonghong Wu

Abstract A new approach is proposed to evaluate the non-limit active earth pressure in cohesive-frictional based on the horizontal slices method and limit equilibrium method. This approach takes into account the arching effect, displacement, average shear stress of the soil slice, rupture angle and tension cracks. The accuracy of the proposed method is demonstrated by comparing the experimental results and other theoretical methods. The comparison results show that the proposed approach is suitable for calculating the non-limit active earth pressure in cohesive-frictional soil and cohesionless soil. Additionally, the empirical formulations of the mobilized internal friction angle and soil-wall interface friction angle usually used to cohesionless soil are still applied to cohesive-frictional soil through comparison calculated results of other theoretical methods and finite element method. Some valid formulations of the rupture angle and tension cracks were derived considering the cohesion, wall height, and unit weight.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Minghui Yang ◽  
Bo Deng

Spaces for backfills are often constrained and narrowed when retaining walls must be built close to existing stable walls in urban areas or near rock faces in mountainous areas. The discrete element method (DEM), using Particle Flow Code (PFC-2D) software, was employed to simulate the behavior of cohesionless soil with narrow width behind a rigid retaining wall when the wall translation moved away from the soils. The simulations focused on the failure model of the soil when the movement of the wall reaches the value where active earth pressure occurs, and the shape of the sliding surface was captured. Then, based on the limit equilibrium method with the obtained slip surfaces in PFC-2D, a simplified analytical method is presented to obtain a solution of the active earth pressure acting on rigid retaining with narrow backfill width. The point of application of the active earth pressure is also obtained. The calculated values agree well with those from physical tests in the previous literature. Furthermore, the effects of the width of the backfill, internal friction angle of soil, and wall-soil friction angle on the distribution of active earth pressure are discussed.


2013 ◽  
Vol 353-356 ◽  
pp. 89-94
Author(s):  
Dai Wang ◽  
Yong Zhi Wang

Calculation methods for active earth pressure of retaining wall are analyzed and discussed, and then based on energy conservation principle, one formula about calculation of active earth pressure was deduced which was illustrated with two engineering examples. The results suggest: compared with other limit equilibrium method, this method is closer to practical action and relatively simple, and is applicable to any case calculation for active earth pressure of wall retaining, so has high promotion value.


DYNA ◽  
2017 ◽  
Vol 84 (202) ◽  
pp. 9-15
Author(s):  
André Luís Brasil Cavalcante ◽  
Juan Félix Rodríguez Rebolledo

En este artículo se describe una metodología basada en el método de estimación puntual de Rosenblueth para el análisis del empuje activo desarrollado en un muro de retención con relleno cohesivo-friccionante bajo condiciones de carga sísmica. El principio básico de esta metodología es usar dos estimaciones puntales, i.e., la desviación estándar y el valor medio, para examinar una variable en el análisis de seguridad. Es posible mostrar que aumentando el valor del coeficiente de aceleración sísmica horizontal, el factor de seguridad por volteo decrece y la probabilidad de falla aumenta, especialmente para coeficientes mayores que 0.2. Por otro lado, es observado que el valor medio del factor de seguridad crece cuando aumenta el coeficiente de aceleración sísmica vertical, sin embargo la probabilidad de falla se mantiene prácticamente igual para el valor del factor de seguridad considerado como crítico (1.15).


Sign in / Sign up

Export Citation Format

Share Document