scholarly journals Mechanical Properties and Drying Shrinkage Investigation of Alkali-Activated Mortar Using Waste Glass Powder

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianqing Gong ◽  
Zhigang Qu

Alkali-activated mortar (AAM) is one of the products of waste glass recycling that exhibits promising potential for wide engineering applications such as the construction industry. In this study, recycled waste glass powder-based additives, namely, Silica Fume (SF) and Nano-SiO2 (NS), were investigated for their potential to enhance the mechanical properties (strength) and drying-shrinkage resistance of AAM. The results indicated that 5.0% and 1.5% were the optimum SF and NS dosages, respectively, for optimizing AAM performance in terms of the compressive strength, flexural strength, and drying-shrinkage resistance. A prediction model, based on backpropagation (BP) neural network analysis, was also satisfactorily formulated and preliminarily validated for predicting the drying shrinkage of AAM containing SF or NS.

2019 ◽  
Vol 69 (335) ◽  
pp. 194 ◽  
Author(s):  
S. Stoleriu ◽  
I. N. Vlasceanu ◽  
C. Dima ◽  
A. I. Badanoiu ◽  
G. Voicu

Porous alkali activated materials (AAM), can be obtained from waste glass powder and slag mixtures by alkali activation with NaOH solution. To obtain an adequate porous microstructure, the hardened AAM pastes were thermally treated at temperatures ranging between 900°C and 1000°C, for 60 or 30 minutes. Due to the intumescent behaviour specific for this type of materials, an important increase of the volume and porosity occurs during the thermal treatment. The partial substitution of waste glass powder with slag, determines the increase of compressive strength assessed before (up to 37 MPa) and after (around 10 MPa) thermal treatment; the increase of slag dosage also determines the increase of the activation temperature of the intumescent process (above 950°C). The high porosity and the specific microstructure (closed pores with various shapes and sizes) of these materials recommend them to be utilised as thermal and acoustical insulation materials.


Author(s):  
Rui Xiao ◽  
Pawel Polaczyk ◽  
Miaomiao Zhang ◽  
Xi Jiang ◽  
Yiyuan Zhang ◽  
...  

As the concept of sustainable pavement gains prominence, a growing number of industrial wastes and recycled materials have been utilized in the pavement industry to preserve natural resources. This study investigates the potential use of waste glass powder-based geopolymer cement as a stabilizing agent in recycled waste glass aggregate (GA) bases. Two recycled materials, waste glass powder (GP) and class F fly ash (FF), were used as the raw materials in the preparation of geopolymer. Virgin aggregate (VA) was replaced by GA at varying replacement ratios as the pavement base materials, and the mechanical behaviors before and after geopolymer stabilization were evaluated. Without stabilization, the incorporation of over 10% GA caused significant detrimental effects on the California bearing ratios (CBR) of base materials, which should be carefully managed in pavement construction. However, all geopolymer stabilized samples showed decent strength properties, indicating the effectiveness of geopolymer stabilization. The use of GA reduced the drying shrinkage of base samples, although the mechanical properties were compromised. During the sample preparation, a higher curing temperature and relative humidity resulted in better mechanical behaviors, and the surface of GA could dissolve in alkaline solution and involve in the geopolymerization at 40°C. The microstructure and minerology of geopolymer stabilizer of base materials were characterized by scanning electron microscopy (SEM) and X-ray defraction (XRD) analyses. This study confirmed the promise of using waste glass-based pavement base materials as the greener substitutes and the potential synergy between waste glass recycling and the pavement industry.


2019 ◽  
Vol 50 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Elżbieta Horszczaruk ◽  
Piotr Brzozowski

The utilization of solid waste materials or industrial waste as partial substitution of cement is growing in construction industry all around world. Less cement consumption causes consequently reduction in CO2 emission into the atmosphere and reduction in energy consumption. This paper examines the possibility of using finely ground waste glass as a partial replacement for cement and as a sealing admixture. Glass powder used in the research was prepared from the glass waste obtained from a local recycling company. Glass cullet made of brown glass, which after rinsing to remove sugars and other impurities, was dried and ground to a fraction below 125 μm.This paper is the revised version of the paper that has been published in the Proceedings of the Creative Construction Conference 2018 (Horszczaruk and Brzozowski, 2018).


2017 ◽  
Vol 165 ◽  
pp. 1306-1315 ◽  
Author(s):  
Giada Kyaw Oo D'Amore ◽  
Marco Caniato ◽  
Andrea Travan ◽  
Gianluca Turco ◽  
Lucia Marsich ◽  
...  

2019 ◽  
Vol 22 (3) ◽  
pp. 208-212
Author(s):  
Sheelan M. Hama ◽  
Alhareth M. Abdulghafor ◽  
Mohammed Tarrad Nawar

In this work, waste glass powder from broken windows and plastic fibers from waste polyethylene terephthalate bottles are utilized to produce an economical self-compact concrete. Fresh properties (slump flow diameter, slump Flow T50, V. Funnel, L–Box), mechanical properties (Compressive strength and Flexural strength) and impact resistance of self-compact concrete are investigated. 15% waste glass powder as a partial replacement of cement with five percentages of polyethylene terephthalate plastic waste were adopted: 0% (reference), 0.5%, 0.75%, 1%, 1.25% and 1.5% by volume. It seems that the flow ability of self-compact concrete decreases with the increasing of the amount of plastic fibers. The compressive strength was increased slightly with plastic fiber content up to (0.75%), about 4.6% For more than (0.75%) plastic fiber. The compressive strength began to decrease about 15.2%. The results showed an improvement in flexural strength and an impact on the resistance in all tested specimens’ content of the plastic fibers, especially at (1.5%) fibers.


Sign in / Sign up

Export Citation Format

Share Document