scholarly journals Proportional PDC Design-Based Robust Stabilization and Tracking Control Strategies for Uncertain and Disturbed T-S Model

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Chekib Ghorbel ◽  
Amira Tiga ◽  
Naceur Benhadj Braiek

This paper presents a proportional parallel distributed compensation (PPDC) design to the robust stabilization and tracking control of the nonlinear dynamic system, which is described by the uncertain and perturbed Takagi–Sugeno (T-S) fuzzy model. The proposed PPDC control design can greatly reduce the number of adjustable parameters involved in the original PDC and separate them from the feedback gain. Furthermore, the process of finding the common quadratic Lyapunov matrix is simplified. Then, the global asymptotic stability with decay rate and disturbance attenuation of the closed-loop T-S model affected by uncertainties and external disturbances are discussed using the H∞ synthesis and linear matrix inequality (LMI) tools. Finally, to illustrate the merit of our purpose, numerical simulation studies of stabilizing and tracking an inverted pendulum system are presented.

Author(s):  
Chekib Ghorbel ◽  
Zeineb Rayouf ◽  
Naceur Benhadj Braiek

This article presents robust stabilization and tracking control problems for multi-input multi-output Hammerstein model with external disturbances. This model is characterized by static nonlinear elements followed by a linear dynamic block. Moreover, the unknown parameters of the identified mathematical model are estimated using the multivariable output error state space subspace algorithm. Unlike the general control strategy that used the nonlinearity inversion method, the nonlinearities are supposed not bijective. In this context, inverse nonlinear functions of polynomial structure are suggested in this article. Furthermore, the composition of the static nonlinear elements and their approximate inverses in series with the linear dynamic block are then decomposed into a set of linear parts using the Takagi–Sugeno fuzzy representation. Consequently, new sufficient stability conditions with decay rate and disturbance attenuation using the [Formula: see text] criterion and linear matrix inequality tools are discussed. Finally, simulation studies are provided to illustrate the merit of our purpose.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Gong ◽  
Yi Zeng

This paper investigates theH∞filtering problem of discrete singular Markov jump systems (SMJSs) with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition onH∞-disturbance attenuation is presented, in which both stability and prescribedH∞performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependentH∞filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI). Finally, an example is given to illustrate the effectiveness of the result.


Author(s):  
Fatih Adıgüzel ◽  
Yaprak Yalçın

A discrete-time backstepping controller with an active disturbance attenuation property for the Inverted-Pendulum system is constructed in this paper. The main purpose of this study is to show that Immersion and Invariance (I & I) approach can be used to design a nonlinear observer for disturbance estimation and demonstrate its effectiveness considering a nonlinear system with an unstable equilibrium point, namely Inverted-Pendulum system, by utilizing the estimated values in backstepping control design. All designs are directly performed in discrete-time domain to obtain directly implementable observer and controller in discrete processors with superior performance compared to emulators. The Inverted-Pendulum system is not in strict feedback form therefore backstepping procedure cannot be directly applied. In order to enable backstepping construction, firstly a partial feedback linearization is performed and afterwards a novel discrete-time coordinate transformation is proposed. Prior to the construction of partial feedback linearizing and backstepping controller, a nonlinear disturbance estimator design is proposed with Immersion and Invariance approach. The estimated disturbance values used in the partial feedback linearization and construction of the backstepping controller. The global asymptotic stability of the estimator and local asymptotic stability of overall closed loop system are proved in the sense of Lyapunov. Performance of proposed direct discrete-time backstepping control with discrete I & I observer is compared with a backstepping sliding mode controller with another nonlinear disturbance observer (NDO) by simulations.


2005 ◽  
Vol 128 (3) ◽  
pp. 696-700 ◽  
Author(s):  
Zhijian Ji ◽  
Xiaoxia Guo ◽  
Long Wang ◽  
Guangming Xie

This paper addresses robust H∞ control and stabilization of switched linear systems with norm-bounded time-varying uncertainties. First, based on multiple Lyapunov functions methodology, a sufficient condition is derived for robust stabilization with a prescribed disturbance attenuation level γ only by employing state-dependent switching rules. Then the robust H∞ control synthesis via switched state feedback is studied. It is shown that a switched state-feedback controller can be designed to stabilize the switched systems with an H∞-norm bound if a matrix inequality based condition is feasible. This condition can be dealt with as linear matrix inequalities (LMIs) provided that the associated parameters are selected in advance. All the results presented can be regarded as an extension of some existing results for both switched and nonswitched systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Le Wang ◽  
Haipeng Pan ◽  
Jinfeng Gao ◽  
Dongdong Chen

Based on the T-S model, a predictive compensation scheme including timer and counter for wireless networked system with long time delay and data packet dropout is proposed in this paper. By the separation principle, the state observation predictor and the state feedback controller are designed separately. For the case of fixed delay, the stability of the closed-loop networked control systems is discussed. Simulation by inverted pendulum system illustrates the effectiveness of the proposed method in wireless networked system based on T-S model.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Leipo Liu ◽  
Xiaona Song

This paper is concerned withH∞static output tracking control of nonlinear systems with one-sided Lipschitz condition. The dimensions of system model and reference model may be different. A static output feedback controller is designed to guarantee that the system output asymptotically tracks the reference output withH∞disturbance rejection level. A new sufficient condition is derived to obtain the static output feedback gain by linear matrix inequality (LMI), and no equality constraints can be needed. Finally, an example is given to illustrate the effectiveness of the proposed method.


2006 ◽  
Vol 129 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Huai-Ning Wu

This paper is concerned with the design of reliable robust H∞ fuzzy control for uncertain nonlinear continuous-time systems with Markovian jumping actuator faults. The Takagi and Sugeno fuzzy model is employed to represent an uncertain nonlinear system with Markovian jumping actuator faults. First, based on the parallel distributed compensation (PDC) scheme, a sufficient condition such that the closed-loop fuzzy system is robustly stochastically stable and satisfies a prescribed level of H∞-disturbance attenuation is derived. In the derivation process, a stochastic Lyapunov function is used to test the stability and H∞ performance of the system. Then, a new improved linear matrix inequality (LMI) formulation is applied to this condition to alleviate the interrelation between the stochastic Lyapunov matrix and system matrices containing controller variables, which results in a tractable LMI-based condition for the existence of reliable and robust H∞ fuzzy controllers. A suboptimal fuzzy controller is proposed to minimize the level of disturbance attenuation subject to the LMI constraints. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document