scholarly journals Efficient Defense Decision-Making Approach for Multistep Attacks Based on the Attack Graph and Game Theory

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jing Liu ◽  
Yuchen Zhang ◽  
Hao Hu ◽  
Jinglei Tan ◽  
Qiang Leng ◽  
...  

In the multistep attack scenario, each rational attack-defense player tries to maximize his payoff, but the uncertainty about his adversary prevents him from taking the favorable actions. How to select the best strategy from the candidate strategies to maximize the defense payoff becomes the core issue. For this purpose, the paper innovatively designs a game theory model from the point of network survivability in combination with the attribute attack graph. The attack graph is created based on the network connectivity and known vulnerabilities using the MulVAL toolkit, which gives the full view of all the known vulnerabilities and their interdependence. Then, we use the attack graph to extract attack-defense actions, candidate attack-defense strategies, attack-defense payoffs, and network states, as well as other game modeling elements. Afterwards, the payoffs of attack-defense strategies are quantified by integrating attack-defense strength and network survivability. In addition, we input the above elements into the game model. Through repeated learning, deduction, and improvement, we can optimize the layout of defense strategies. Finally, the efficient strategy selection approach is designed on the tradeoff between defense cost and benefit. The simulation of attack-defense confrontation in small-scale LAN shows that the proposed approach is reliable and effective.

Author(s):  
Yuan Zhi ◽  
Paul B. Hamilton ◽  
Guoyong Wu ◽  
Ni Hong ◽  
Yuanyuan Sun ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3067
Author(s):  
Megan Culler ◽  
Hannah Burroughs

The share of renewable and distributed energy resources (DERs), like wind turbines, solar photovoltaics and grid-connected batteries, interconnected to the electric grid is rapidly increasing due to reduced costs, rising efficiency, and regulatory requirements aimed at incentivizing a lower-carbon electricity system. These distributed energy resources differ from traditional generation in many ways including the use of many smaller devices connected primarily (but not exclusively) to the distribution network, rather than few larger devices connected to the transmission network. DERs being installed today often include modern communication hardware like cellular modems and WiFi connectivity and, in addition, the inverters used to connect these resources to the grid are gaining increasingly complex capabilities, like providing voltage and frequency support or supporting microgrids. To perform these new functions safely, communications to the device and more complex controls are required. The distributed nature of DER devices combined with their network connectivity and complex controls interfaces present a larger potential attack surface for adversaries looking to create instability in power systems. To address this area of concern, the steps of a cyberattack on DERs have been studied, including the security of industrial protocols, the misuse of the DER interface, and the physical impacts. These different steps have not previously been tied together in practice and not specifically studied for grid-connected storage devices. In this work, we focus on grid-connected batteries. We explore the potential impacts of a cyberattack on a battery to power system stability, to the battery hardware, and on economics for various stakeholders. We then use real hardware to demonstrate end-to-end attack paths exist when security features are disabled or misconfigured. Our experimental focus is on control interface security and protocol security, with the initial assumption that an adversary has gained access to the network to which the device is connected. We provide real examples of the effectiveness of certain defenses. This work can be used to help utilities and other grid-connected battery owners and operators evaluate the severity of different threats and the effectiveness of defense strategies so they can effectively deploy and protect grid-connected storage devices.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
F. A. Kuipers

Network survivability—the ability to maintain operation when one or a few network components fail—is indispensable for present-day networks. In this paper, we characterize three main components in establishing network survivability for an existing network, namely, (1) determining network connectivity, (2) augmenting the network, and (3) finding disjoint paths. We present a concise overview of network survivability algorithms, where we focus on presenting a few polynomial-time algorithms that could be implemented by practitioners and give references to more involved algorithms.


2021 ◽  
Vol 237 ◽  
pp. 01025
Author(s):  
Yanying Zhang ◽  
Gui Jiang ◽  
Ziwei Yu

The pollution problem of SMEs is an important problem to be solved in the process of China’s economic development. Based on the game theory, this paper takes the government and SMEs as the two sides of the game, constructing the game theory model of pollution control of SMEs, putting forward the strategies to promote the pollution control of SMEs according to the analysis results of the model.


Sign in / Sign up

Export Citation Format

Share Document