scholarly journals Construction and Optimization of Fuzzy Rule-Based Classifier with a Swarm Intelligent Algorithm

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Li Mao ◽  
Qidong Chen ◽  
Jun Sun

In this paper, we propose a particle swarm optimization method incorporating quantum qubit operation to construct and optimize fuzzy rule-based classifiers. The proposed algorithm, denoted as QiQPSO, is inspired by the quantum computing principles. It employs quantum rotation gates to update the probability of each qubit with the corresponding quantum angle updating according to the update equation of the quantum-behaved particle swarm optimization (QPSO). After description of the principle of QiQPSO, we show how to apply QiQPSO to establish a fuzzy classifier through two procedures. The QiQPSO algorithm is first used to construct the initial fuzzy classification system based on the sample data and the grid method of partitioning the feature space, and then the fuzzy rule base of the initial fuzzy classifier is optimized further by QiQPSO in order to reduce the number of the fuzzy rules and thus improve its interpretability. In order to verify the effectiveness of the proposed method, QiQPSO is tested on various real-world classification problems. The experimental results show that the QiQPSO is able to effectively select feature variables and fuzzy rules of the fuzzy classifiers with high classification accuracies. The performance comparison with other methods also shows that the fuzzy classifier optimized by QiQPSO has higher interpretability as well as comparable or even better classification accuracies.

2019 ◽  
Vol 8 (3) ◽  
pp. 108-122 ◽  
Author(s):  
Halima Salah ◽  
Mohamed Nemissi ◽  
Hamid Seridi ◽  
Herman Akdag

Setting a compact and accurate rule base constitutes the principal objective in designing fuzzy rule-based classifiers. In this regard, the authors propose a designing scheme based on the combination of the subtractive clustering (SC) and the particle swarm optimization (PSO). The main idea relies on the application of the SC on each class separately and with a different radius in order to generate regions that are more accurate, and to represent each region by a fuzzy rule. However, the number of rules is then affected by the radiuses, which are the main preset parameters of the SC. The PSO is therefore used to define the optimal radiuses. To get good compromise accuracy-compactness, the authors propose using a multi-objective function for the PSO. The performances of the proposed method are tested on well-known data sets and compared with several state-of-the-art methods.


2018 ◽  
Vol 18 (2) ◽  
pp. 36-50
Author(s):  
Samira Bordbar ◽  
Pirooz Shamsinejad

Abstract Opinion Mining or Sentiment Analysis is the task of extracting people final opinion about something through their unstructured sentiments. The Opinion Mining process is as follows: first, product features which are most important to a user are extracted from his/her comments. Then, sentiments will be emotionally classified using their emotional implications. In this paper we propose an opinion classification method based on Fuzzy Logic. Up to now, a few methods have taken advantage of fuzzy logic in opinion classification and all of them have imported fuzzy rules into system as background knowledge. But the main challenge here is finding the fuzzy rules. Our contribution is to automatically extract fuzzy rules and their parameters from training data. Here we have used the Particle Swarm Optimization (PSO) algorithm to extract fuzzy rules from training data. Also, for better results we have devised a mutation-based PSO. All proposed methods have been implemented and tested on relevant data. Results confirm that our method can reach better accuracy than current state of the art methods in this domain.


2010 ◽  
Vol 18 (6) ◽  
pp. 1083-1097 ◽  
Author(s):  
R. P. Prado ◽  
S. Garcia-Galan ◽  
J. E. Munoz Exposito ◽  
A. J. Yuste

Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad Javad Abdi ◽  
Seyed Mohammad Hosseini ◽  
Mansoor Rezghi

We develop a detection model based on support vector machines (SVMs) and particle swarm optimization (PSO) for gene selection and tumor classification problems. The proposed model consists of two stages: first, the well-known minimum redundancy-maximum relevance (mRMR) method is applied to preselect genes that have the highest relevance with the target class and are maximally dissimilar to each other. Then, PSO is proposed to form a novel weighted SVM (WSVM) to classify samples. In this WSVM, PSO not only discards redundant genes, but also especially takes into account the degree of importance of each gene and assigns diverse weights to the different genes. We also use PSO to find appropriate kernel parameters since the choice of gene weights influences the optimal kernel parameters and vice versa. Experimental results show that the proposed mRMR-PSO-WSVM model achieves highest classification accuracy on two popular leukemia and colon gene expression datasets obtained from DNA microarrays. Therefore, we can conclude that our proposed method is very promising compared to the previously reported results.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. Sakinah S. Ahmad ◽  
Witold Pedrycz

The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.


Sign in / Sign up

Export Citation Format

Share Document