scholarly journals Development of High Performance Airfoils for Application in Small Wind Turbine Power Generation

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Emmanuel Yeboah Osei ◽  
Richard Opoku ◽  
Albert K. Sunnu ◽  
Muyiwa S. Adaramola

Small wind turbine power generation systems have the potential to meet the electricity demand of the residential sector in developing countries. However, due to their exposure to low Reynolds number (Re) flow conditions and associated problems, specific airfoils are required for the design of their blades. In this research, XFOIL was used to develop and test three high performance airfoils (EYO7-8, EYO8-8, and EYO9-8) for small wind turbine application. The airfoils were subsequently used in conjunction with Blade Element Momentum Theory to develop and test 3-bladed 6 m diameter wind turbine rotors. The aerodynamic performance parameters of the airfoils tested were lift, drag, lift-to-drag ratio, and stall angle. At Re=300,000, EYO7-8, EYO8-8, and EYO9-8 had maximum lift-to-drag ratios of 134, 131, and 127, respectively, and maximum lift coefficients of 1.77, 1.81, and 1.81, respectively. The stall angles were 12° for EYO7-8, 14° for EYO8-8, and 15° for EYO9-8. Together, the new airfoils compared favourably with other existing low Re airfoils and are suitable for the design of small wind turbine blades. Analysis of the results showed that the performance improvement of the EYO-Series airfoils is as a result of the design optimization that employed an optimal thickness-to-camber ratio (t/c) in the range of 0.85–1.50. Preliminary wind turbine rotor analysis also showed that the EYO7-8, EYO8-8, and EYO9-8 rotors had maximum power coefficients of 0.371, 0.366, and 0.358, respectively.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


2013 ◽  
Vol 284-287 ◽  
pp. 518-522
Author(s):  
Hua Wei Chi ◽  
Pey Shey Wu ◽  
Kami Ru Chen ◽  
Yue Hua Jhuo ◽  
Hung Yun Wu

A wind-power generation system uses wind turbine blades to convert the kinetic energy of wind to drive a generator which in turn yields electricity, the aerodynamic performance of the wind turbine blades has decisive effect on the cost benefit of the whole system. The aerodynamic analysis and the optimization of design parameters for the wind turbine blades are key techniques in the early stage of the development of a wind-power generation system. It influences the size selection of connecting mechanisms and the specification of parts in the design steps that follows. A computational procedure and method for aerodynamics optimization was established in this study for three-dimensional blades and the rotor design of a wind turbine. The procedure was applied to improving a previously studied 25kW wind turbine rotor design. Results show that the aerodynamic performance of the new three-dimensional blades has remarkable improvement after optimization.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


Author(s):  
Sourabh Deshpande ◽  
Nithin Rao ◽  
Nitin Pradhan ◽  
John L. Irwin

Utilizing the advantages of additive manufacturing methods, redesigning, building and testing of an existing integral Savonius / Darrieus “Lenz2 Wing” style vertical axis wind turbine is predicted to improve power generation efficiency. The current wind turbine blades and supports made from aluminum plate and sheet are limiting the power generation due to the overall weight. The new design is predicted to increase power generation when compared to the current design due to the lightweight spiral Darrieus shaped hollow blade made possible by 3D printing, along with an internal Savonius blade made from aluminum sheet and traditional manufacturing techniques. The design constraints include 3D printing the turbine blades in a 0.4 × 0.4 × 0.3 m work envelope while using a Stratasys Fortus 400mc and thus the wind turbine blades are split into multiple parts with dovetail joint features, when bonded together result in a 1.2 m tall working prototype. Appropriate allowance in the mating dovetail joints are considered to facilitate the fit and bonding, as well as angle, size and placement of the dovetail to maximize strength. The spiral shape and Darrieus style cross section of the blade that provides the required lift enabling it to rotate from the static condition are oriented laterally for 3D printing to maximize strength. The bonding of the dovetail joints is carried out effectively using an acetone solution dip. The auxiliary components of the wind turbine which include the center support pole, top and bottom support, and center Savonius blades are manufactured using lightweight aluminum. Design features are included in the 3D printed blade parts so that they can be assembled with the aluminum parts in bolted connections. Analysis of the 3D CAD models show that the hybrid aluminum and hollow 3D printed blade construction provides a 50% cost savings over a 3D printed fully solid blade design while minimizing weight and maximizing the strength where necessary. Analysis of the redesign includes a detailed weight comparison, structural strength and the cost of production. Results include linear static finite element analysis for the strength in dovetail joint bonding and the aluminum to 3D printed connections. Additional data reported are the time frame for the design and manufacturing of the system, budget, and an operational analysis of the wind turbine with concern for safety. Results are analyzed to determine the advantages in utilizing a hybrid additive manufacturing and aluminum construction for producing a more efficient vertical axis wind turbine. Techniques used in the production of this type of wind turbine blade are planned to be utilized in similar applications such as a lightweight hovercraft propeller blade design to be tested in future research projects.


2013 ◽  
Vol 17 (6) ◽  
pp. 671-676 ◽  
Author(s):  
C. Astle ◽  
I. Burge ◽  
M. Chen ◽  
T. Herrler ◽  
L. Kwan ◽  
...  

Author(s):  
M. McGugan ◽  
G. Pereira ◽  
B. F. Sørensen ◽  
H. Toftegaard ◽  
K. Branner

The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.


2018 ◽  
Vol 165 ◽  
pp. 07005
Author(s):  
Wei Sai ◽  
Gin Boay Chai

A methodology to study the fatigue of a wind turbine blade in a 10KW small wind turbine is proposed in this paper. Two working conditions (namely normal fatigue operation condition and extreme wind condition) are considered based on IEC61400-2. The maximum load calculated from both cases were used as a reference to perform material sample fatigue study. Fiber-metal laminate – GLARE 3/2 with a centre 1mm notch on the external aluminium layers was modelled based on fracture mechanics approach to calculate the stress intensity factor and fatigue crack growth rate at maximum applied stress of 240Mpa. GLARE panel fabrication and tensile tests were included. The fatigue tests were performed on unnotched samples with stress range from 80Mpa to 300Mpa and plotted into S-N curve.


Sign in / Sign up

Export Citation Format

Share Document