scholarly journals Image Encryption Scheme Based on a Generalized Arnold Map and RSA Algorithm

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Kaixin Jiao ◽  
Guodong Ye ◽  
Youxia Dong ◽  
Xiaoling Huang ◽  
Jianqing He

This study proposes a new image encryption scheme based on a generalized Arnold map and Rivest–Shamir–Adleman (RSA) algorithm. First, the parameters of the generalized Arnold map are generated by an asymmetric encryption-system RSA algorithm, and the keystream is produced iteratively. To change the distribution of pixel values, the image data are hidden by XOR diffusion. Second, both rows and columns of the image are cyclically confused to hide the image data again. Then, the additive mode diffusion operation is performed to realize third-layer hiding for image content. The overall diffusion and confusion operations are conducted twice to obtain the final cipher image. Test results prove that the encryption scheme proposed in this study is effective and has strong antiattack capabilities and key sensitivity. In addition, because the scheme security relies on the RSA algorithm, it has high security.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Riguang Lin ◽  
Sheng Li

This research proposes a new image encryption scheme based on Lorenz hyperchaotic system and Rivest–Shamir–Adleman (RSA) algorithm. Firstly, the initial values of the Lorenz hyperchaotic system are generated by RSA algorithm, and the key stream is produced iteratively. In order to change the position and gray value of the pixel, the image data are hidden by additive mode diffusion. Secondly, the diffusion image matrix is reshaped into a one-dimensional image matrix, which is confused without repetition to hide the image data again. Then, the finite field diffusion algorithm is executed to realize the third hiding of the image information. In order to diffuse the pixel information into the entire cipher image, the additive mode diffusion algorithm needs to be looped twice. Finally, the cipher image can be obtained. The experimental results prove that the image encryption scheme proposed in this research is effective and has strong antiattack and key sensitivity. Moreover, the security of this encryption scheme relies on the RSA algorithm, which has high security.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1371-1374
Author(s):  
Rui Song Ye ◽  
Ming Ye ◽  
Hao Qi Yao ◽  
Wen Hao Ye

A novel image encryption scheme comprising of one permutation process and one diffusion process is proposed. In the permutation process, the image sized is expanded to one sized by dividing the plain-image into two parts: one consisting of the higher 4bits and one consisting of the lower 4bits. The permutation operations are done row-by-row and column-by-column to increase the speed. The chaotic generalized Arnold map is utilized to generate chaotic sequence, which is quantized to shuffle the expanded image. The chaotic sequence for permutation process is dependent on plain-image and cipher keys, resulting in good key sensitivity and plain-image sensitivity. To achieve more avalanche effect and larger key space, Chinese Remainder Theorem is applied to diffuse the shuffled image. The key sensitivity and key space of the proposed image encryption have been analyzed as well. The experimental results suggest that the proposed image encryption scheme can be used for secure image and video communication applications.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 510
Author(s):  
Taiyong Li ◽  
Duzhong Zhang

Image security is a hot topic in the era of Internet and big data. Hyperchaotic image encryption, which can effectively prevent unauthorized users from accessing image content, has become more and more popular in the community of image security. In general, such approaches conduct encryption on pixel-level, bit-level, DNA-level data or their combinations, lacking diversity of processed data levels and limiting security. This paper proposes a novel hyperchaotic image encryption scheme via multiple bit permutation and diffusion, namely MBPD, to cope with this issue. Specifically, a four-dimensional hyperchaotic system with three positive Lyapunov exponents is firstly proposed. Second, a hyperchaotic sequence is generated from the proposed hyperchaotic system for consequent encryption operations. Third, multiple bit permutation and diffusion (permutation and/or diffusion can be conducted with 1–8 or more bits) determined by the hyperchaotic sequence is designed. Finally, the proposed MBPD is applied to image encryption. We conduct extensive experiments on a couple of public test images to validate the proposed MBPD. The results verify that the MBPD can effectively resist different types of attacks and has better performance than the compared popular encryption methods.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
Xing-Yuan Wang ◽  
Xue-Mei Bao

In this paper, we propose a novel selective image encryption scheme using a one-way coupled map lattice (CML) consisting of logistic maps and a selector constructed by two variants of a cyclic shift register (VCSR). The initial conditions and the coupling constant of CML in our scheme are influenced by all the contents of the plain image. Moreover, the selector is closely related to the nonencrypted part of the plain image. In addition, we select only a portion of image data to encrypt via a wheel-switch scheme governed by the selector. Users can select an appropriate proportion to encrypt the plain image for their different demands of security and efficiency. Experimental results and theoretical analysis show that the cryptosystem is effective and can resist various typical attacks.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Muhammad Asif ◽  
Sibgha Mairaj ◽  
Zafar Saeed ◽  
M. Usman Ashraf ◽  
Kamal Jambi ◽  
...  

The nonlinear transformation concedes as S-box which is responsible for the certainty of contemporary block ciphers. Many kinds of S-boxes are planned by various authors in the literature. Construction of S-box with a powerful cryptographic analysis is the vital step in scheming block cipher. Through this paper, we give more powerful and worthy S-boxes and compare their characteristics with some previous S-boxes employed in cryptography. The algorithm program planned in this paper applies the action of projective general linear group P G L 2 , G F 2 8 on Galois field G F 2 8 . The proposed S-boxes are constructed by using Mobius transformation and elements of Galois field. By using this approach, we will encrypt an image which is the preeminent application of S-boxes. These S-boxes offer a strong algebraic quality and powerful confusion capability. We have tested the strength of the proposed S-boxes by using different tests, BIC, SAC, DP, LP, and nonlinearity. Furthermore, we have applied these S-boxes in image encryption scheme. To check the strength of image encryption scheme, we have calculated contrast, entropy, correlation, energy, and homogeneity. The results assured that the proposed scheme is better. The advantage of this scheme is that we can secure our confidential image data during transmission.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Abdelkader Moumen ◽  
Hocine Sissaoui

AbstractVulnerability of communication of digital images is an extremely important issue nowadays, particularly when the images are communicated through insecure channels. To improve communication security, many cryptosystems have been presented in the image encryption literature. This paper proposes a novel image encryption technique based on an algorithm that is faster than current methods. The proposed algorithm eliminates the step in which the secrete key is shared during the encryption process. It is formulated based on the symmetric encryption, asymmetric encryption and steganography theories. The image is encrypted using a symmetric algorithm, then, the secret key is encrypted by means of an asymmetrical algorithm and it is hidden in the ciphered image using a least significant bits steganographic scheme. The analysis results show that while enjoying the faster computation, our method performs close to optimal in terms of accuracy.


2021 ◽  
Vol 71 (2) ◽  
pp. 209-221
Author(s):  
Ram Ratan ◽  
Arvind Yadav

A selective bit-plane encryption scheme was proposed for securing the transmission of image data in mobile environments with a claim that it provides a high security viz. the encryption of the four most significant bit-planes is sufficient for a high image data security. This paper presents the security analysis of the said encryption scheme and reports new important results. We perform the security analysis of the bit-level encryption by considering the normal images and their histogram equalised enhanced images. We consider different bit-plane aspects to analyse the security of the image encryption, and show that the encryption of the four most significant bit-planes is not adequate. The contents of the images can be obtained even when all the bit-planes except one least significant bit-plane are encrypted in the histogram equalised images as shown in the results. The bit-plane level security analysis seems very useful for the analysis of the bit-plane level image encryption schemes.


2021 ◽  
Author(s):  
Xinyu Gao ◽  
Jiawu Yu ◽  
Huizhen Yan ◽  
Jun Mou

Abstract A multi-image encryption scheme based on the fractional-order hyperchaotic system is designed in this paper. The chaotic characteristics of this system are analyzed by the phase diagram, Lyapunov exponent and bifurcation diagram. According to the analyses results, an interesting image encryption algorithm is proposed. Multiple grayscale images are fused into a color image using different channels. Then, the color image is scrambled and diffused in order to obtain a more secure cipher image. The pixel confusion operation and diffusion operation are assisted by fractional hyperchaotic system. Experimental simulation and test results indicate that the devised multi-image encryption scheme can effectively encrypt multiple images, which increase the efficiency of image encryption and transmission, and have good security performance.


Sign in / Sign up

Export Citation Format

Share Document