scholarly journals Polarization Properties of Obliquely Incident EM Waves in Nonuniform Weakly Ionized Dusty Plasma

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li-Ping Gan ◽  
Li-Xin Guo ◽  
Jiang-Ting Li ◽  
Lin-Jing Guo

Effects of nonuniform weakly ionized dusty plasma on the polarization properties of obliquely incident electromagnetic (EM) waves were theoretically investigated in this paper. The dielectric coefficient of magnetized dusty plasma is obtained based on the Bhatnagar–Gross–Krook collision model. Then, the effects of external magnetic field, dust radii, and density on the polarization mismatch loss of obliquely incident EM waves in the L-band were analyzed using the equivalent impedance method. Results indicate that the larger the external magnetic field, the greater the polarization mismatch loss. In addition, we also found that dusty particles alleviate the deterioration of the polarization state significantly; regulating and controlling dust radius and density can avoid polarization reversal and reduce the polarization mismatch loss. We further analyzed the variation of the polarization state under different reentry heights. Our analysis reveals interesting features concerning polarization properties of obliquely incident EM waves, which provide an important theoretical basis for information reception in the plasma sheath containing ablative particles.

2000 ◽  
Vol 63 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. A. MAMUN ◽  
M. H. A. HASSAN

Effects of dust grain charge fluctuation, obliqueness and external magnetic field on a finite-amplitude dust acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge-fluctuating dust grains, are investigated using the reductive perturbation method. It is shown that such a magnetized dusty plasma system may support a dust acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self- consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust acoustic solitary potential significantly. The implications of these results for some space and astrophysical dusty plasma systems, especially planetary ring systems and cometary tails, are briefly mentioned.


2019 ◽  
Vol 70 (3) ◽  
pp. 37-46
Author(s):  
R.U. Masheyeva ◽  
◽  
K.N. Dzhumagulova ◽  
E.O. Shalenov ◽  
◽  
...  

2014 ◽  
Vol 80 (4) ◽  
pp. 593-606 ◽  
Author(s):  
M. SHAHMANSOURI ◽  
A. A. MAMUN

A theoretical investigation is carried out to study the basic properties of dust-acoustic (DA) shock waves propagating in a magnetized non-thermal dusty plasma (containing cold viscous dust fluid, non-thermal ions, and non-thermal electrons). The reductive perturbation method is used to derive the Korteweg–de Vries–Burgers equation. It is found that the basic properties of DA shock waves are significantly modified by the combined effects of dust fluid viscosity, external magnetic field, and obliqueness (angle between external magnetic field and DA wave propagation direction). It is shown that the dust fluid viscosity acts as a source of dissipation, and is responsible for the formation of DA shock structures in the dusty plasma system under consideration. The implications of our results in some space and laboratory plasma situations are briefly discussed.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Andre Melzer ◽  
H. Krüger ◽  
D. Maier ◽  
S. Schütt

AbstractIn this review, we summarize recent advances in the field of dusty plasmas at strong magnetic fields. Special emphasis is put on situations where experimental laboratory observations are available. These generally comprise dusty plasmas with magnetized electrons and ions, but unmagnetized dust. The fundamental parameters characterizing a magnetized (dusty) plasma are given and various effects in dusty plasmas under magnetic fields are presented. As examples, the reaction of the dust component to magnetic-field modified plasma properties, such as filamentation, imposed structures, dust rotation, nanodusty plasmas and the resulting forces on the dust are discussed. Further, the behavior of the dust charge is described and shown to be relatively unaffected by magnetic fields. Wake field formation in magnetized discharges is illustrated: the strength of the wake field is found to be reduced with increased magnetic field. The propagation of dust acoustic waves in magnetized dusty plasmas is experimentally measured and analyzed indicating that the wave dynamics are not heavily influenced by the magnetic field. Only at the highest fields ($$B> 1$$ B > 1  T) the wave activity is found to be reduced. Moreover, it is discussed how dust-cyclotron waves might be used to indicate a magnetized dust component. Finally, implications of a magnetized dusty plasma are illustrated.


Sign in / Sign up

Export Citation Format

Share Document