scholarly journals Designing an Efficient and Highly Dynamic Substitution-Box Generator for Block Ciphers Based on Finite Elliptic Curves

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ghulam Murtaza ◽  
Naveed Ahmed Azam ◽  
Umar Hayat

Developing a substitution-box (S-box) generator that can efficiently generate a highly dynamic S-box with good cryptographic properties is a hot topic in the field of cryptography. Recently, elliptic curve (EC)-based S-box generators have shown promising results. However, these generators use large ECs to generate highly dynamic S-boxes and thus may not be suitable for lightweight cryptography, where the computational power is limited. The aim of this paper is to develop and implement such an S-box generator that can be used in lightweight cryptography and perform better in terms of computation time and security resistance than recently designed S-box generators. To achieve this goal, we use ordered ECs of small size and binary sequences to generate certain sequences of integers which are then used to generate S-boxes. We performed several standard analyses to test the efficiency of the proposed generator. On an average, the proposed generator can generate an S-box in 0.003 seconds, and from 20,000 S-boxes generated by the proposed generator, 93 % S-boxes have at least the nonlinearity 96. The linear approximation probability of 1000 S-boxes that have the best nonlinearity is in the range [0.117, 0.172] and more than 99% S-boxes have algebraic complexity at least 251. All these S-boxes have the differential approximation probability value in the interval [0.039, 0.063]. Computational results and comparisons suggest that our newly developed generator takes less running time and has high security against modern attacks as compared to several existing well-known generators, and hence, our generator is suitable for lightweight cryptography. Furthermore, the usage of binary sequences in our generator allows generating plaintext-dependent S-boxes which is crucial to resist chosen-plaintext attacks.

Author(s):  
Chong Guo ◽  
Bei Gong

AbstractIn order to solve the problem between low power of Internet of Things devices and the high cost of cryptography, lightweight cryptography is required. The improvement of the scalar multiplication can effectively reduce the complexity of elliptic curve cryptography (ECC). In this paper, we propose a fast formula for point septupling on elliptic curves over binary fields using division polynomial and multiplexing of intermediate values to accelerate the computation by more than 14%. We also propose a scalar multiplication algorithm based on the step multi-base representation using point halving and the septuple formula we proposed, which significantly reduces the computational cost. The experimental results show that our method is more efficient over binary fields and contributes to reducing the complexity of ECC.


Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2020 ◽  
Vol 14 (1) ◽  
pp. 339-345
Author(s):  
Taechan Kim ◽  
Mehdi Tibouchi

AbstractIn a recent paper devoted to fault analysis of elliptic curve-based signature schemes, Takahashi et al. (TCHES 2018) described several attacks, one of which assumed an equidistribution property that can be informally stated as follows: given an elliptic curve E over 𝔽q in Weierstrass form and a large subgroup H ⊂ E(𝔽q) generated by G(xG, yG), the points in E(𝔽q) whose x-coordinates are obtained from xG by randomly flipping a fixed, sufficiently long substring of bits (and rejecting cases when the resulting value does not correspond to a point in E(𝔽q)) are close to uniformly distributed among the cosets modulo H. The goal of this note is to formally state, prove and quantify (a variant of) that property, and in particular establish sufficient bounds on the size of the subgroup and on the length of the substring of bits for it to hold. The proof relies on bounds for character sums on elliptic curves established by Kohel and Shparlinski (ANTS–IV).


2015 ◽  
Vol 100 (1) ◽  
pp. 33-41 ◽  
Author(s):  
FRANÇOIS BRUNAULT

It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over $\mathbf{Q}$ can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves $E$ of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of $E$. Finally, we raise several open questions.


2018 ◽  
Vol 154 (10) ◽  
pp. 2045-2054
Author(s):  
Andrew Snowden ◽  
Jacob Tsimerman

Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius elements, and somewhere not potentially good reduction. We prove that any lisse sheaf of rank two possessing these properties comes from an elliptic curve.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 72514-72550 ◽  
Author(s):  
Carlos Andres Lara-Nino ◽  
Arturo Diaz-Perez ◽  
Miguel Morales-Sandoval

2017 ◽  
Vol 2 (3) ◽  
pp. 32-39
Author(s):  
Aya Khalid Naji ◽  
Saad Najim Alsaad

In the development of 3G devices, all elements of multimedia (text, image, audio, and video) are becoming crucial choice for communication. The secured system in 3G devices has become an issue of importance, on which lot of research is going on. The traditional cryptosystem like DES, AES, and RSA do not able to meet with the properties of the new generation of digital mobile devices. This paper presents an implementation of video protection of fully encrypted using Elliptic Curve   Cryptography (ECC) on a mobile device. The Android platform is used for this purpose.  The results refer that the two important criteria of video mobile encryption: the short computation time required and high confidentially are provided.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


2010 ◽  
Vol 13 ◽  
pp. 370-387
Author(s):  
Sonal Jain

AbstractWe determine the smallest possible canonical height$\hat {h}(P)$for a non-torsion pointPof an elliptic curveEover a function field(t) of discriminant degree 12nwith a 2-torsion point forn=1,2,3, and with a 3-torsion point forn=1,2. For eachm=2,3, we parametrize the set of triples (E,P,T) of an elliptic curveE/with a rational pointPandm-torsion pointTthat satisfy certain integrality conditions by an open subset of2. We recover explicit equations for all elliptic surfaces (E,P,T) attaining each minimum by locating them as curves in our projective models. We also prove that forn=1,2 , these heights are minimal for elliptic curves over a function field of any genus. In each case, the optimal (E,P,T) are characterized by their patterns of integral points.


Sign in / Sign up

Export Citation Format

Share Document