scholarly journals Novel One-Pot Solvothermal Synthesis of High-Performance Copper Hexacyanoferrate for Cs+ Removal from Wastewater

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chi Ma ◽  
Zhenzhen Jiang ◽  
Senjian Han ◽  
Yafei Guo ◽  
Tianlong Deng

Efficient removal of radioactive cesium from complex wastewater is a challenge. Unlike traditional precipitation and hydrothermal synthesis, a novel vast specific surface area adsorbent of copper hexacyanoferrates named EA-CuHCF was synthesized using a one-pot solvothermal method under the moderate ethanol media characterized by XRD, SEM, EDS, BET, and FTIR. It was found that the maximum adsorption capacity towards Cs+ was 452.5 mg/g, which is far higher than most of the reported Prussian blue analogues so far. Moreover, EA-CuHCF could effectively adsorb Cs+ at a wide pH range and low concentration of Cs+ in geothermal water within 30 minutes, and the removal rate of Cs+ was 92.1%. Finally, the separation factors between Cs+ and other competitive ions were higher than 553, and the distribution coefficient of Cs+ reached up to 2.343 × 104 mL/g. These properties suggest that EA-CuHCF synthesized by the solvothermal method has high capacity and selectivity and can be used as a candidate for Cs+ removal from wastewater.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Zhiguo Wu ◽  
Fengyi Wang ◽  
Shiyong Zuo ◽  
Shuankui Li ◽  
Baisong Geng ◽  
...  

Sn chalcogenides, including SnS, Sn2S3, and SnS2, have been extensively studied as anode materials for lithium batteries. In order to obtain one kind of high capacity, long cycle life lithium batteries anode materials, three-dimensional (3D) flower-like hierarchitectures constructed by SnS/SnS2heterostructure nanosheets with thickness of ~20 nm have been synthesized via a simple one-pot solvothermal method. The obtained samples exhibit excellent electrochemical performance as anode for Li-ion batteries (LIBs), which deliver a first discharge capacity of 1277 mAhg−1and remain a reversible capacity up to 500 mAhg−1after 50 cycles at a current of 100 mAg−1.


2015 ◽  
Vol 51 (17) ◽  
pp. 3660-3662 ◽  
Author(s):  
Wei Zhou ◽  
Jinxian Wang ◽  
Feifei Zhang ◽  
Shumin Liu ◽  
Jianwei Wang ◽  
...  

A SnO2–N-doped graphene composite with high-performance lithium storage properties is synthesized by a fast, facile and one-pot microwave-assisted solvothermal method.


Nanoscale ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 10685-10692 ◽  
Author(s):  
Yao Chi ◽  
Wenping Yang ◽  
Yichen Xing ◽  
Yan Li ◽  
Huan Pang ◽  
...  

Multilayer NiCo-MOF nanosheet assemblies hold great potential as an electrode material for EES equipment. A facile one-pot synthesis procedure, high capacity and stable performance are prominent features of multilayer NiCo-MOF materials.


2021 ◽  
Author(s):  
Jieyang Huang ◽  
Andréa Martin ◽  
Anna Urbanski ◽  
Ranjit Kulkarni ◽  
Patrick Amsalem ◽  
...  

Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g<sup>-1</sup> (for Li<sub>15</sub>Si<sub>4</sub>) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows <i>via</i> cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles <i>via</i> conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Author(s):  
Jieyang Huang ◽  
Andréa Martin ◽  
Anna Urbanski ◽  
Ranjit Kulkarni ◽  
Patrick Amsalem ◽  
...  

Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g<sup>-1</sup> (for Li<sub>15</sub>Si<sub>4</sub>) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows <i>via</i> cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles <i>via</i> conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Author(s):  
Michael Bojdys ◽  
Jieyang Huang ◽  
Anna Urbanski ◽  
Andréa Martin ◽  
Ranjit Kulkarni ◽  
...  

Abstract Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g-1 (for Li15Si4) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows via cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Author(s):  
Jieyang Huang ◽  
Andréa Martin ◽  
Anna Urbanski ◽  
Ranjit Kulkarni ◽  
Patrick Amsalem ◽  
...  

Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g<sup>-1</sup> (for Li<sub>15</sub>Si<sub>4</sub>) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows <i>via</i> cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles <i>via</i> conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2016 ◽  
Vol 52 (23) ◽  
pp. 4341-4344 ◽  
Author(s):  
Lin Sun ◽  
Tingting Su ◽  
Lei Xu ◽  
Meipin Liu ◽  
Hong-Bin Du

Ultra-thin SiOxnanosheets, made up of partly-oxidized Si single atomic layers, are preparedviaa one-pot solvothermal method from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet composites show high capacity and long-term cycling stability when used as anode materials in lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document