scholarly journals Sustained Auditory Attentional Load Decreases Audiovisual Integration in Older and Younger Adults

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanna Ren ◽  
Yawei Hou ◽  
Jiayu Huang ◽  
Fanghong Li ◽  
Tao Wang ◽  
...  

The modulation of attentional load on the perception of auditory and visual information has been widely reported; however, whether attentional load alters audiovisual integration (AVI) has seldom been investigated. Here, to explore the effect of sustained auditory attentional load on AVI and the effects of aging, nineteen older and 20 younger adults performed an AV discrimination task with a rapid serial auditory presentation task competing for attentional resources. The results showed that responses to audiovisual stimuli were significantly faster than those to auditory and visual stimuli ( AV > V ≥ A , all p < 0.001 ), and the younger adults were significantly faster than the older adults under all attentional load conditions (all p < 0.001 ). The analysis of the race model showed that AVI was decreased and delayed with the addition of auditory sustained attention ( no _ load > load _ 1 > load _ 2 > load _ 3 > load _ 4 ) for both older and younger adults. In addition, AVI was lower and more delayed in older adults than in younger adults in all attentional load conditions. These results suggested that auditory sustained attentional load decreased AVI and that AVI was reduced in older adults.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanna Ren ◽  
Hannan Li ◽  
Yan Li ◽  
Tao Wang ◽  
Weiping Yang

Previous studies confirmed that the cognitive resources are limited for each person, and perceptual load affects the detection of stimulus greatly; however, how the visual perceptual load influences audiovisual integration (AVI) is still unclear. Here, 20 older and 20 younger adults were recruited to perform an auditory/visual discrimination task under various visual perceptual-load conditions. The analysis for the response times revealed a significantly faster response to the audiovisual stimulus than to the visual stimulus or auditory stimulus (all p &lt; 0.001), and a significantly slower response by the older adults than by the younger adults to all targets (all p ≤ 0.024). The race-model analysis revealed a higher AV facilitation effect for older (12.54%) than for younger (7.08%) adults under low visual perceptual-load conditions; however, no obvious difference was found between younger (2.92%) and older (3.06%) adults under medium visual perceptual-load conditions. Only the AV depression effect was found for both younger and older adults under high visual perceptual-load conditions. Additionally, the peak latencies of AVI were significantly delayed in older adults under all visual perceptual-load conditions. These results suggested that visual perceptual load decreased AVI (i.e., depression effects), and the AVI effect was increased but delayed for older adults.


i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110207
Author(s):  
Yanna Ren ◽  
Ying Zhang ◽  
Yawei Hou ◽  
Junyuan Li ◽  
Junhao Bi ◽  
...  

Previous studies have demonstrated that exogenous attention decreases audiovisual integration (AVI); however, whether the AVI is different when exogenous attention is elicited by bimodal and unimodal cues and its aging effect remain unclear. To clarify this matter, 20 older adults and 20 younger adults were recruited to conduct an auditory/visual discrimination task following bimodal audiovisual cues or unimodal auditory/visual cues. The results showed that the response to all stimulus types was faster in younger adults compared with older adults, and the response was faster when responding to audiovisual stimuli compared with auditory or visual stimuli. Analysis using the race model revealed that the AVI was lower in the exogenous-cue conditions compared with the no-cue condition for both older and younger adults. The AVI was observed in all exogenous-cue conditions for the younger adults (visual cue > auditory cue > audiovisual cue); however, for older adults, the AVI was only found in the visual-cue condition. In addition, the AVI was lower in older adults compared to younger adults under no- and visual-cue conditions. These results suggested that exogenous attention decreased the AVI, and the AVI was lower in exogenous attention elicited by bimodal-cue than by unimodal-cue conditions. In addition, the AVI was reduced for older adults compared with younger adults under exogenous attention.


Author(s):  
Timothy D. Lee ◽  
Laurie R. Wishart ◽  
Jason E. Murdoch

ABSTRACTAlthough aging is normally associated with declines in motor performance, recent evidence suggests that older adults suffer no loss in some measures of bimanual coordination relative to younger adults. Two hypotheses for this finding were compared in the present research. One hypothesis was based on the assumption that these coordination patterns are automatic and relatively impervious to the effects of aging. An alternative explanation is that older adults maintain this level of bimanual coordination at a cost of increased attention demand. These hypotheses were tested in an experiment in which bimanual coordination patterns (in-phase and anti-phase) were paced at two metronome frequencies (1 and 2 Hz), either alone or together, with serial performance of an attention-demanding task (adding 3s to a two-digit number at a 1 Hz pace). The results of the study provided some support for both hypotheses. The automaticity view was supported only for the coordination patterns at the 1 Hz metronome frequency. Support for an attention allocation hypothesis was shown in the observed-movement frequency data, as older adults tended to sacrifice movement frequency at the 2 Hz metronome pace in order to maintain performance in the movement and counting tasks. These findings are discussed relative to recent accounts of the role of automaticity in the absence of age-related differences in the performance of cognitive tasks.


Perception ◽  
2016 ◽  
Vol 46 (1) ◽  
pp. 6-17 ◽  
Author(s):  
N. Van der Stoep ◽  
S. Van der Stigchel ◽  
T. C. W. Nijboer ◽  
C. Spence

Multisensory integration (MSI) and exogenous spatial attention can both speedup responses to perceptual events. Recently, it has been shown that audiovisual integration at exogenously attended locations is reduced relative to unattended locations. This effect was observed at short cue-target intervals (200–250 ms). At longer intervals, however, the initial benefits of exogenous shifts of spatial attention at the cued location are often replaced by response time (RT) costs (also known as Inhibition of Return, IOR). Given these opposing cueing effects at shorter versus longer intervals, we decided to investigate whether MSI would also be affected by IOR. Uninformative exogenous visual spatial cues were presented between 350 and 450 ms prior to the onset of auditory, visual, and audiovisual targets. As expected, IOR was observed for visual targets (invalid cue RT < valid cue RT). For auditory and audiovisual targets, neither IOR nor any spatial cueing effects were observed. The amount of relative multisensory response enhancement and race model inequality violation was larger for uncued as compared with cued locations indicating that IOR reduces MSI. The results are discussed in the context of changes in unisensory signal strength at cued as compared with uncued locations.


2018 ◽  
Vol 31 (3-4) ◽  
pp. 227-249 ◽  
Author(s):  
Alix L. de Dieuleveult ◽  
Anne-Marie Brouwer ◽  
Petra C. Siemonsma ◽  
Jan B. F. van Erp ◽  
Eli Brenner

Older individuals seem to find it more difficult to ignore inaccurate sensory cues than younger individuals. We examined whether this could be quantified using an interception task. Twenty healthy young adults (age 18–34) and twenty-four healthy older adults (age 60–82) were asked to tap on discs that were moving downwards on a screen with their finger. Moving the background to the left made the discs appear to move more to the right. Moving the background to the right made them appear to move more to the left. The discs disappeared before the finger reached the screen, so participants had to anticipate how the target would continue to move. We examined how misjudging the disc’s motion when the background moves influenced tapping. Participants received veridical feedback about their performance, so their sensitivity to the illusory motion indicates to what extent they could ignore the task-irrelevant visual information. We expected older adults to be more sensitive to the illusion than younger adults. To investigate whether sensorimotor or cognitive load would increase this sensitivity, we also asked participants to do the task while standing on foam or counting tones. Background motion influenced older adults more than younger adults. The secondary tasks did not increase the background’s influence. Older adults might be more sensitive to the moving background because they find it more difficult to ignore irrelevant sensory information in general, but they may rely more on vision because they have less reliable proprioceptive and vestibular information.


Perception ◽  
2016 ◽  
Vol 46 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Yanna Ren ◽  
Weiping Yang ◽  
Kohei Nakahashi ◽  
Satoshi Takahashi ◽  
Jinglong Wu

Although neuronal studies have shown that audiovisual integration is regulated by temporal factors, there is still little knowledge about the impact of temporal factors on audiovisual integration in older adults. To clarify how stimulus onset asynchrony (SOA) between auditory and visual stimuli modulates age-related audiovisual integration, 20 younger adults (21–24 years) and 20 older adults (61–80 years) were instructed to perform an auditory or visual stimuli discrimination experiment. The results showed that in younger adults, audiovisual integration was altered from an enhancement (AV, A ± 50 V) to a depression (A ± 150 V). In older adults, the alterative pattern was similar to that for younger adults with the expansion of SOA; however, older adults showed significantly delayed onset for the time-window-of-integration and peak latency in all conditions, which further demonstrated that audiovisual integration was delayed more severely with the expansion of SOA, especially in the peak latency for V-preceded-A conditions in older adults. Our study suggested that audiovisual facilitative integration occurs only within a certain SOA range (e.g., −50 to 50 ms) in both younger and older adults. Moreover, our results confirm that the response for older adults was slowed and provided empirical evidence that integration ability is much more sensitive to the temporal alignment of audiovisual stimuli in older adults.


Author(s):  
S Enriquez-Geppert ◽  
J F Flores-Vázquez ◽  
M Lietz ◽  
M Garcia-Pimenta ◽  
P Andrés

Abstract Objective The Face-Name Associative Memory test (FNAME) has recently received attention as a test for early diagnosis of Alzheimer’s disease. So far, however, there has been no systematic investigation of the effects of aging. Here, we aimed to assess the extent to which the FNAME performance is modulated by normal ageing. Method In a first step, we adapted the FNAME material to the Dutch population. In a second step, younger (n = 29) and older adults (n = 29) were compared on recall and recognition performance. Results Significant age effects on name recall were observed after the first exposure of new face-name pairs: younger adults remembered eight, whereas older adults remembered a mean of four out of twelve names. Although both age groups increased the number of recalled names with repeated face-name exposure, older adults did not catch up with the performance of the younger adults, and the age-effects remained stable. Despite of that, both age groups maintained their performance after a 30-min delay. Considering recognition, no age differences were demonstrated, and both age groups succeeded in the recognition of previously shown faces and names when presented along with distractors. Conclusions This study presents for the first time the results of different age groups regarding cross-modal associative memory performance on the FNAME. The recall age effects support the hypothesis of age-related differences in associative memory. To use the FNAME as an early cognitive biomarker, further subscales are suggested to increase sensitivity and specificity in the clinical context.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952097841
Author(s):  
Yanna Ren ◽  
Zhihan Xu ◽  
Sa Lu ◽  
Tao Wang ◽  
Weiping Yang

Age-related audio-visual integration (AVI) has been investigated extensively; however, AVI ability is either enhanced or reduced with ageing, and this matter is still controversial because of the lack of systematic investigations. To remove possible variates, 26 older adults and 26 younger adults were recruited to conduct meaningless and semantic audio-visual discrimination tasks to assess the ageing effect of AVI systematically. The results for the mean response times showed a significantly faster response to the audio-visual (AV) target than that to the auditory (A) or visual (V) target and a significantly faster response to all targets by the younger adults than that by the older adults (A, V, and AV) in all conditions. In addition, a further comparison of the differences between the probability of audio-visual cumulative distributive functions (CDFs) and race model CDFs showed delayed AVI effects and a longer time window for AVI in older adults than that in younger adults in all conditions. The AVI effect was lower in older adults than that in younger adults during simple meaningless image discrimination (63.0 ms vs. 108.8 ms), but the findings were inverse during semantic image discrimination (310.3 ms vs. 127.2 ms). In addition, there was no significant difference between older and younger adults during semantic character discrimination (98.1 ms vs. 117.2 ms). These results suggested that AVI ability was impaired in older adults, but a compensatory mechanism was established for processing sematic audio-visual stimuli.


2021 ◽  
Vol 25 ◽  
pp. 233121652110453
Author(s):  
Minke J. de Boer ◽  
Tim Jürgens ◽  
Deniz Başkent ◽  
Frans W. Cornelissen

Since emotion recognition involves integration of the visual and auditory signals, it is likely that sensory impairments worsen emotion recognition. In emotion recognition, young adults can compensate for unimodal sensory degradations if the other modality is intact. However, most sensory impairments occur in the elderly population and it is unknown whether older adults are similarly capable of compensating for signal degradations. As a step towards studying potential effects of real sensory impairments, this study examined how degraded signals affect emotion recognition in older adults with normal hearing and vision. The degradations were designed to approximate some aspects of sensory impairments. Besides emotion recognition accuracy, we recorded eye movements to capture perceptual strategies for emotion recognition. Overall, older adults were as good as younger adults at integrating auditory and visual information and at compensating for degraded signals. However, accuracy was lower overall for older adults, indicating that aging leads to a general decrease in emotion recognition. In addition to decreased accuracy, older adults showed smaller adaptations of perceptual strategies in response to video degradations. Concluding, this study showed that emotion recognition declines with age, but that integration and compensation abilities are retained. In addition, we speculate that the reduced ability of older adults to adapt their perceptual strategies may be related to the increased time it takes them to direct their attention to scene aspects that are relatively far away from fixation.


Sign in / Sign up

Export Citation Format

Share Document