scholarly journals Design of RCS Reduction Applied to W-Band Circularly Polarized Antenna Array

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chun-Hong Chen ◽  
Pei-Yang Wang ◽  
Jun Chen ◽  
Ting Xu

A single-layer capsule-shaped polarization conversion metasurface (PCM) is proposed in this paper. In the W-band, its polarization conversion rate (PCR) exceeds 97%, effectively changing the polarization direction of the incident wave. PCM is arranged in a chessboard array to achieve broadband RCS reduction. Placing the PCM array on a circularly polarized sequentially rotated slot antenna array, simulated results show that the radiation characteristics of the antenna array are hardly affected by the PCM array. The results of measurement demonstrate that the RCS of the antenna array with PCM array proposed is reduced by more than 10 dB from 40 to 119 GHz; the relative bandwidth (−10 dB) reaches 96.3%.

2019 ◽  
pp. 139-145
Author(s):  
A. N. Mikhailov

A new type of single‑layer transrefleсtor structure based on microstrip reflective antenna array is described. The developed  device is a single‑layer printed circuit board on one side of which a system of printed reflectors is located, and on the other is  a polarization structure consisting of parallel metal conductors, in contrast to a microstrip reflectarray antenna. The shape and  geometrical dimensions of printed reflectors arranged in a rectangular or hexagonal (triangular) pattern are chosen in such a way  that they transform a spherical front of an incident vertically polarized electromagnetic wave into a flat front of reflected wave. In  the case of irradiation of the developed transreflector with a horizontal polarization wave, the printed structure makes minimal  electromagnetic energy loss during its passage. The results of characteristics modeling (including phase curves) of an element  of the reflective lattice in the W‑band for different angles of incidence of the wave on the planar structure under study are given.  Based on the results obtained, the sizes of the reflective elements of the transreflector, which provide for the correction of the  incident wave with the necessary phase discrete, are determined and an electrodynamic model of the transreflector antenna is  built. The simulation of the main radiation characteristics of the antenna with the developed single‑layer transreflector was carried  out.


2009 ◽  
Vol 40 (8) ◽  
pp. 1192-1195 ◽  
Author(s):  
Zhi Juan Su ◽  
Gui Fu Ding ◽  
Wen Jing Lu ◽  
Wei qiang Chen

2020 ◽  
Vol 62 (9) ◽  
pp. 2976-2988
Author(s):  
Mehrdad Nosrati ◽  
Chenxi Yang ◽  
Xiaofan Liu ◽  
Negar Tavassolian

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Guang Sun ◽  
Ge Gao ◽  
Tingting Liu ◽  
Yi Liu ◽  
Hu Yang

In this paper, a wideband slot antenna element and its array with stereoscopic differentially fed structures are proposed for the radar system. Firstly, a series of slots and a stereoscopic differentially fed structure are designed for the antenna element, which makes it possess a wide bandwidth, stable radiation characteristics, and rather high gain. Moreover, the stereoscopic feeding structure can firmly support the antenna’s radiation structure and reduce the influence of feeding connectors on radiating performance. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a hierarchical feeding network is designed for the array on the basis of the stereoscopic differentially fed structure. For validation, the antenna element and 4 × 4 array are both fabricated and measured: (1) the measured −10 dB impedance bandwidth of the antenna element is 62% (6.8–12.9 GHz) and the gain within the entire band is 5–9.7 dBi and (2) the measured −10 dB impedance bandwidth of the array is approximately 50% (7 to 12 GHz) with its gain being 14–19.75 dBi within the entire band. Notably, measured results agree well with simulations and show great advantages over other similar antennas on bandwidth and gain.


2021 ◽  
Vol 35 (12) ◽  
pp. 1500-1506
Author(s):  
Khalid. Ibrahim ◽  
Walaa. Hassan ◽  
Esmat Abdallah ◽  
Ahmed Attiya

In this paper the analysis and design of a dual circularly polarized 4×4 antenna array operating in Ku-band are discussed with emphasis on its sequential feeding network. The dual circular polarization is achieved by feeding a stacked octagonal patches with a wideband branch line coupler. The proposed 4×4 antenna array is based on two separate sequential feeding networks for LH and RH circular polarizations. The advantage of the proposed feeding network is that it is implemented on a single layer. Simulation results by using both HFSS and CST are presented for comparison. In addition, experimental verifications are presented.


Sign in / Sign up

Export Citation Format

Share Document