scholarly journals Sliding Mode Matrix-Projective Synchronization for Fractional-Order Neural Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinman He ◽  
Tengfei Lei ◽  
Limin Jiang

This work generalizes the projection scaling factor to a general constant matrix and proposes the matrix-projection synchronization (MPS) for fractional-order neural networks (FNNs) based on sliding mode control firstly. This kind of scaling factor is far more complex than the constant scaling factor, and it is highly variable and difficult to predict in the process of realizing the synchronization for the driving and response systems, which can ensure high security and strong confidentiality. Then, the fractional-order integral sliding surface and sliding mode controller for FNNs are designed. Furthermore, the criterion for realizing MPS is proved, and the reachability and stability of the synchronization error system are analyzed, so that the global MPS is realized for FNNs. Finally, a numerical application is given to demonstrate the feasibility of theory analysis. MPS is more general, so it is reduced to antisynchronization, complete synchronization, projective synchronization (PS), and modified PS when selecting different projective matrices. This work will enrich the synchronization theory of FNNs and provide a feasible method to study the MPS of other fractional-order dynamical models.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Chong Chen ◽  
Zhixia Ding

This paper investigates projective synchronization of nonidentical fractional-order memristive neural networks (NFMNN) via sliding mode controller. Firstly, based on the sliding mode control theory, a new fractional-order integral sliding mode controller is designed to ensure the occurrence of sliding motion. Furthermore, according to fractional-order differential inequalities and fractional-order Lyapunov direct method, the trajectories of the system converge to the sliding mode surface to carry out sliding mode motion, and some sufficient criteria are obtained to achieve global projective synchronization of NFMNN. In addition, the conclusions extend and improve some previous works on the synchronization of fractional-order memristive neural networks (FMNN). Finally, a simulation example is given to verify the effectiveness and correctness of the obtained results.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750160 ◽  
Author(s):  
Shuai Song ◽  
Xiaona Song ◽  
Ines Tejado Balsera

This paper investigates the mixed [Formula: see text] and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks with time delays. Our aim is to design a controller such that, though the unavoidable phenomena of time delay and external disturbances is fully considered, the resulting closed-loop system is stable with a mixed [Formula: see text] and passive performance level. By combining sliding mode control and adaptive control methods, a novel adaptive sliding mode control strategy is designed for the synchronization of time-delayed FO dynamic networks. Via the application of FO system stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequalities. Based on the conditions, a desired controller which can guarantee the stability of the closed-loop system and also ensure a mixed [Formula: see text] and passive performance level is designed. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.


Author(s):  
Xin Meng ◽  
Baoping Jiang ◽  
Cunchen Gao

This paper considers the Mittag-Leffler projective synchronization problem of fractional-order coupled systems (FOCS) on the complex networks without strong connectedness by fractional sliding mode control (SMC). Combining the hierarchical algorithm with the graph theory, a new SMC strategy is designed to realize the projective synchronization between the master system and the slave system, which covers the globally complete synchronization and the globally anti-synchronization. In addition, some novel criteria are derived to guarantee the Mittag-Leffler stability of the projective synchronization error system. Finally, a numerical example is given to illustrate the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document