scholarly journals Classification of Date Fruits into Genetic Varieties Using Image Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Murat Koklu ◽  
Ramazan Kursun ◽  
Yavuz Selim Taspinar ◽  
Ilkay Cinar

A great number of fruits are grown around the world, each of which has various types. The factors that determine the type of fruit are the external appearance features such as color, length, diameter, and shape. The external appearance of the fruits is a major determinant of the fruit type. Determining the variety of fruits by looking at their external appearance may necessitate expertise, which is time-consuming and requires great effort. The aim of this study is to classify the types of date fruit, that are, Barhee, Deglet Nour, Sukkary, Rotab Mozafati, Ruthana, Safawi, and Sagai by using three different machine learning methods. In accordance with this purpose, 898 images of seven different date fruit types were obtained via the computer vision system (CVS). Through image processing techniques, a total of 34 features, including morphological features, shape, and color, were extracted from these images. First, models were developed by using the logistic regression (LR) and artificial neural network (ANN) methods, which are among the machine learning methods. Performance results achieved with these methods are 91.0% and 92.2%, respectively. Then, with the stacking model created by combining these models, the performance result was increased to 92.8%. It has been concluded that machine learning methods can be applied successfully for the classification of date fruit types.

Author(s):  
Matheus del Valle ◽  
Kleber Stancari ◽  
Pedro Arthur Augusto de Castro ◽  
Moises Oliveira dos Santos ◽  
Denise Maria Zezell

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 15837-15849 ◽  
Author(s):  
Yang Li ◽  
Yujia Tian ◽  
Zijian Qin ◽  
Aixia Yan

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0166898 ◽  
Author(s):  
Monique A. Ladds ◽  
Adam P. Thompson ◽  
David J. Slip ◽  
David P. Hocking ◽  
Robert G. Harcourt

Author(s):  
Ravi Singh ◽  
Ankit Ganeshpurkar ◽  
Powsali Ghosh ◽  
Ankit Vyankatrao Pokle ◽  
Devendra Kumar ◽  
...  

2020 ◽  
Vol 493 (3) ◽  
pp. 4209-4228 ◽  
Author(s):  
Ting-Yun Cheng ◽  
Christopher J Conselice ◽  
Alfonso Aragón-Salamanca ◽  
Nan Li ◽  
Asa F L Bluck ◽  
...  

ABSTRACT There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or an investigation for maximizing their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification [Convolutional Neural Network (CNN), K-nearest neighbour, logistic regression, Support Vector Machine, Random Forest, and Neural Networks] by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of ∼2800 galaxies with visual classification from GZ1, we reach an accuracy of ∼0.99 for the morphological classification of ellipticals and spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both ellipticals and spirals. We confirm that ∼2.5 per cent galaxies are misclassified by GZ1 in our study. After correcting these galaxies’ labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).


Sign in / Sign up

Export Citation Format

Share Document