scholarly journals Parathyroid hormone promotes the osteogenesis of lipopolysaccharide-induced human bone marrow mesenchymal stem cells through the JNK MAPK pathway

2021 ◽  
Author(s):  
Ziyue Qin ◽  
Shu Hua ◽  
Huifen Chen ◽  
Zhuo Wang ◽  
Haoran Wang ◽  
...  

Periodontitis is a series of inflammatory processes caused by bacterial infection. Parathyroid hormone (PTH) plays a critical role in bone remodeling. This study aimed to investigate the influences of PTH on human bone marrow mesenchymal stem cells (HBMSCs) pretreated with lipopolysaccharide (LPS). The proliferative ability was measured using cell counting kit-8 and flow cytometry. The optimal concentrations of PTH and LPS were determined using alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin red staining. Osteogenic differentiation was further assessed by quantitative reverse transcription–polymerase chain reaction, Western blot analysis, and immunofluorescence staining. PTH had no effects on the proliferation of HBMSCs. Also, 100 ng/mL LPS significantly inhibited HBMSC osteogenesis, while 10−9 mol/L PTH was considered as the optimal concentration to reverse the adverse effects. Mechanistically, c-Jun N-terminal kinase (JNK) phosphorylation was activated by PTH in LPS-induced HBMSCs. SP600125, a selective inhibitor targeting JNK mitogen-activated protein kinase (MAPK) signaling, weakened the effects of PTH. Taken together, the findings revealed the role and mechanism of PTH and JNK pathway in promoting the osteogenic differentiation of LPS-induced HBMSCs, which offered an alternative for treating periodontal diseases.

2022 ◽  
Vol 12 (4) ◽  
pp. 770-777
Author(s):  
Siyuan Chen ◽  
Weixiong Guo ◽  
Jinsong Wei ◽  
Han Lin ◽  
Fengyan Guo

Objective: The aim of this study was to explore the role of has_circ_0010452 in the progression of osteoporosis (OP) targeting miR-543, as well as their functions in regulating proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods: The expression levels of circ_0010452 and miR-543 in hBMSCs at different time points of osteogenic differentiation were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). After transfection of circ_0010452 siRNA or miR-543 inhibitor in hBMSCs, the relative expression levels of osteogenic marker proteins, including oat spelt xylan (OSX), osteocalcin (OCN) and collagen I (Col-1), were determined by western blot. Cell proliferation of hBMSCs was valued by Cell Counting Kit 8 (CCK-8) assay. Dual-Luciferase reporter gene assay was performed to verify the relationship between circ_0010452 and miR-543. Subsequently, the regulatory effects of circ_0010452 and miR-543 on osteogenic differentiation and the capability of mineralization were evaluated by alkaline phosphatase (ALP) determination and alizarin red staining, respectively. Results: The expression of circ_0010452 decreased gradually and miR-543 increased in hBMSCs with the prolongation of osteogenic differentiation. circ_0010452 could bind to miR-543, which was negatively regulated by miR-543 in hBMSCs. Moreover, knockdown of circ_0010452 inhibited proliferation and osteogenic differentiation by upregulating miR-543, as well as upregulating expressions of OSX, OCN and Col-1. Furthermore, knockdown of circ_0010452 markedly promoted the capability of mineralization of hBMSCs, which was further reversed by transfection of miR-543 inhibitor. The knockdown of miR-543 partially reversed the inhibitory effect of circ_0010452 on the osteogenesis of hBMSCs. Conclusions: Silence of circ_0010452 promotes the development of OP via binding to miR-543 regulating proliferation and osteogenic differentiation of hBMSCs, thus promoting the progression of osteoporosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiang Sun ◽  
Junchuan Cao ◽  
Jiusong Han ◽  
Bo Jia ◽  
Jing Wang ◽  
...  

Objective. This study is aimed at investigating the role of long noncoding RNA (lncRNA) RP11-815M8.1 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods. RT-PCR was used to detect the expression of lncRNA RP11-815M8.1 before and after osteogenic differentiation of hBMSCs. The lncRNA RP11-815M8.1 in hBMSCs was overexpressed or silenced via lentiviral transfection. The transfection efficiency was detected by RT-PCR, and the proliferation of hBMSCs was determined by CCK-8. After 14 days of osteogenic differentiation of transfected hBMSCs, the expression of osteogenic transcription factors (ALP, OCN, OPN, Runx2, and Osterix) was detected by alizarin red staining and RT-PCR. The mRNAs directly regulated by lncRNA RP11-815M8.1 and targeted miRNAs were analyzed according to the positional relationship between lncRNA and mRNA in the genome and miRanda software. Results. The expression of lncRNA RP11-815M8.1 enhanced with increasing osteogenic differentiation time of hBMSCs. Two days after the transfection of hBMSCs, lncRNA RP11-815M8.1 expression was significantly increased in the overexpression group and significantly decreased in the knockdown group, compared to control cells. The CCK-8 assay showed that overexpression and knockdown of lncRNA RP11-815M8.1 did not affect the proliferation of hBMSCs. After 14 days of differentiation of hBMSCs, stronger alizarin red staining was observed in the overexpression groups, and the expression of osteogenic transcription factors was increased in the overexpression group compared to the control. In the knockdown group, alizarin red staining and the expression of osteogenic transcription factors were decreased. Bioinformatics analysis showed that lncRNA RP11-815M8.1 was directly associated with one mRNA, 27 interacting miRNAs, and 20 miRNA-targeted mRNAs. Conclusion. The osteogenic differentiation of hBMSCs can be promoted by lncRNA RP11-815M8.1 in vitro.


Sign in / Sign up

Export Citation Format

Share Document