scholarly journals Experimental Study on the Caustics of Moving Cracks and Elliptical Curvature under Impact Loading

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haohao Luo ◽  
Renshu Yang ◽  
Yanbing Wang ◽  
Guoliang Yang ◽  
Chengxiao Li ◽  
...  

A dynamic caustics test system was used, and different moving cracks were analysed to study the interaction between the crack growth rate, stress intensity factor, and curvature of the elliptical end of a moving crack under impact loading. Based on the linear elastic fracture mechanics theory, linearly fitting of the crack tip stress intensity factor and the elliptical curvature were employed to obtain the specific functional expressions. ABAQUS software was used to numerically simulate the moving crack fracture process passing through different elliptical curvatures. The crack tip stress intensity factor was calculated by the stress extrapolation method. The stress intensity factor obtained from the numerical calculation and the caustics test was consistent. The test and numerical simulation results showed that the direction of moving cracks entering and passing through the elliptical defects shows a certain regularity. As the ellipse curvature increased, the moving crack stress intensity factor passing through the ellipse gradually decreased, and the moving crack also passed easily through oval defects.

2014 ◽  
Vol 695 ◽  
pp. 580-583
Author(s):  
Noor A. Md Zain ◽  
Ruslizam Daud ◽  
W.Z.A.W. Muhamad ◽  
Khairul Salleh Basaruddin ◽  
Yazid Bajuri ◽  
...  

The theory of linear elastic fracture mechanic (LEFM) has proven that we can evaluate the amount of stress located at the crack tip by determining the stress intensity factor (). The stress at the tip of a sharp crack has the highest stress which can lead to failure on the material. Thus, the cracks within human bones are quite complicated because of the bone microstructure. There are a few factors that can minimize the effect of the cracks so that patients can heal much faster. Hence, this paper focuses on how several crack distances, between two parallel edge cracks can affect the value of stress intensity factor (). Using the LEFM theory, the interaction between two neighboring crack tips was investigated.


Author(s):  
Steven X. Xu ◽  
Darrell R. Lee ◽  
Douglas A. Scarth ◽  
Russell C. Cipolla

Linear elastic fracture mechanics based flaw evaluation procedures in Section XI of the ASME Boiler and Pressure Vessel Code require calculation of the stress intensity factor. Article A-3000 of Appendix A in ASME Section XI prescribes a method to calculate the stress intensity factor for a surface or subsurface flaw by making use of the flaw location stress distribution obtained in the absence of the flaw. The 2015 Edition of ASME Section XI implemented a number of significant improvements in Article A-3000, including closed-form equations for calculating stress intensity factor influence coefficients for circumferential flaws on the inside surface of cylinders. Closed-form equations for stress intensity factor influence coefficients for axial flaws on the inside surface of cylinders have also been developed. Ongoing improvement efforts for Article A-3000 include development of closed-form relations for the stress intensity factor coefficients for flaws on the outside surface of cylinders. The development of closed-form relations for stress intensity factor coefficients for axial flaws on the outside surface of cylinders is described in this paper.


1985 ◽  
Vol 52 (3) ◽  
pp. 585-592 ◽  
Author(s):  
K.-S. Kim

Results of experiments on crack-face impact are presented. The transient stress-intensity factor variation of a crack has been traced by the Stress-Intensity Factor Tracer (SIFT) [1] under time-stepwise uniform pressure loading of the crack faces. To see the effects of various waves generated by the loading, part of the crack faces was left free of traction within the distance l0 from the crack tip. The crack-face impact loading was produced by an electromagnetic force induced by a square pulse of an electric current flowing through a copper strip inserted in the saw-cut crack of a Homalite 100 plate specimen. The current flowed in opposite directions in the two portions of the copper strip, between the crack faces, causing them to repel each other. The short-time and the long-time behavior of the transient stress-intensity factor variation under the impact loading have been carefully investigated. Brittle dynamic initiation of crack extension and the stress-intensity variation of a running crack have been also examined. The experimental results have been compared with theoretical predictions based on Freund’s crack-face concentrated load solution [2]. The agreement between the theory and the experiment is excellent. In this study, the various waves generated by the loading are shown to play different roles in transmitting the load to the crack tip. In addition, confirmation is given that the SIFT is excellent in tracing the stress-intensity factor regardless of the crack-tip motion.


Author(s):  
Jianwei Dong ◽  
Weichi Pei ◽  
Hongchao Ji ◽  
Haiyang Long ◽  
Xiaobin Fu ◽  
...  

42CrMo steel is widely used in ultrahigh-strength structures such as low-speed heavy-duty gears. Mastering the fatigue crack propagation law has important significance for predicting structural fatigue life. Firstly, the fatigue crack propagation experiment is used to obtain the upper and lower thresholds value of type I fatigue crack propagation of 42CrMo steel compact tensile specimen under the alternating load of stress ratio R = 0.1. The Paris formula describing the relationship between the fatigue crack propagation rate and the crack tip stress intensity factor between the upper and lower thresholds value is obtained. Scanning electron microscopy was used to observe the microscopic features of different stages of fatigue fracture. The results show that the twin boundary can provide a place for crack initiation; the defects in the material can promote the initiation and extension of fatigue cracks. The fatigue crack propagation of 42CrMo steel compact tensile specimens was numerically simulated by the finite element method. The relationship between the crack tip stress intensity factor and the crack length was obtained. The analysis results show that the crack tip stress intensity factor calculated by the plane finite element method differs slightly from the experimental results during the stable extension stage. After correction, the correlation coefficient between the numerical simulation correction value and the crack tip stress intensity factor value obtained by the experiment is 0.9926. Finally, the fatigue crack propagation rate corresponding to the crack tip stress intensity factor in the finite element results is calculated by the Paris formula and briefly analyzed. Compared with the experimental results, it shows that the numerical simulation is consistent with it, indicating the accuracy of the numerical simulation method, which can effectively predict the initiation and propagation of fatigue cracks in 42CrMo steel compact tensile specimens.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1898-1903
Author(s):  
Tsutomu Ezumi ◽  
Katsunao Suzuki

In the field of linear elastic fracture mechanics, the stress intensity factor approach has been widely accepted as a valid means for predicting the behavior of a material in the presence of a crack or flaw. To optimize their dimension and to ensure their safety in service, a practical study of the strength under centrifugal force is important. In this paper, it is investigated that the stress intensity factors K_ and K_ on the rotating elliptic disks having outside cracks by means of combining the photoelastic freezing method and the caustics method. Stress intensity factors K and K were determined by using two experimental methods, as a function of ellipticity of the elliptic disk and at two different velocities. The results of these experimental methods was nearly agreement, and attracted the interest.


1962 ◽  
Vol 84 (4) ◽  
pp. 542-546 ◽  
Author(s):  
Fazil Erdogan ◽  
Ozcan Tuncel ◽  
Paul C. Paris

This experimental study was undertaken to investigate the validity of the theory based on the crack tip stress intensity factors to explain the fracture of thin cracked plates subjected to static bending moments. Plexiglas sheets were used as specimens and the loading was pure cylindrical bending. The results indicate that there is in fact a critical value of the stress intensity factor at which the crack starts growing. It was found that, while in static tensile tests the crack growth was unstable, in the case of bending, the external load (here, the bending moment) which starts the crack growing is not sufficient for the complete fracture of the plate if it is maintained constant. That is, when the critical value of the stress intensity factor is reached, the crack starts growing on the tensile side of the plate whereupon the crack tip takes a triangular shape and the system again becomes stable. In order to make the crack grow further, a considerable increase in the load is required.


Sign in / Sign up

Export Citation Format

Share Document