scholarly journals Optimal Allocation Model of Virtual Power Plant Capacity considering Electric Vehicles

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shiping Geng ◽  
Caixia Tan ◽  
Dongxiao Niu ◽  
Xiaopeng Guo

To push forward the development of electric vehicles while improving the economy and environment of virtual power plants (VPPs), research on the optimization of VPP capacity considering electric vehicles is carried out. In this paper, based on this, this paper first analyzes the framework of the VPP with electric vehicles and models each unit of the VPP. Secondly, the typical scenarios of wind power, photovoltaic, electric vehicle charging and discharging, and load are formed by the Monte Carlo method to reduce the output deviation of each unit. Then, taking the maximization of the net income and clean energy consumption of the VPP as the objective function, the capacity optimal allocation model of the VPP considering multiobjective is constructed, and the conditional value-at-risk (CVaR) is introduced to represent the investment uncertainty faced by the VPP. Finally, a VPP in a certain area of Shanxi Province is used to analyze a calculation example and solve it with CPLEX. The results of the calculation example show that, on the one hand, reasonable selection of the optimal scale of EV connected to the VPP is able to improve the economy and environment of the VPP. On the other hand, the introduction of CVaR is available for the improvement of the scientific nature of VPP capacity allocation decisions.

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1289 ◽  
Author(s):  
Huaxiang He ◽  
Aiqi Chen ◽  
Mingwan Yin ◽  
Zhenzhen Ma ◽  
Jinjun You ◽  
...  

The rational allocation of water resources in the basin/region can be better assisted and performed using a suitable water resources allocation model. Rule-based and optimization-based simulation methods are utilized to solve medium- and long-term water resources allocation problems. Since rule-based allocation methods requires more experience from expert practice than optimization-based allocation methods, it may not be utilized by users that lack experience. Although the optimal solution can be obtained via the optimization-based allocation method, the highly skilled expert experience is not taken into account. To overcome this deficiency and employ the advantages of both rule-based and optimization-based simulation methods, this paper proposes the optimal allocation model of water resources where the highly skilled expert experience has been considered therein. The “prospect theory” is employed to analyze highly skilled expert behavior when decision-making events occur. The cumulative prospect theory value is employed to express the highly skilled expert experience. Then, the various elements of the cumulative prospect theory value can be taken as the variables or parameters in the allocation model. Moreover, the optimal water allocation model developed by the general algebraic modeling system (GAMS) has been improved by adding the decision reversal control point and defining the inverse objective function and other constraints. The case study was carried out in the Wuyur River Basin, northeast of China, and shows that the expert experience considered as the decision maker’s preference can be expressed in the improved optimal allocation model. Accordingly, the improved allocation model will contribute to improving the rationality of decision-making results and helping decision-makers better address the problem of water shortage.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 36039-36049 ◽  
Author(s):  
Youbo Liu ◽  
Yue Xiang ◽  
Yangyang Tan ◽  
Bin Wang ◽  
Junyong Liu ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 4165-4170
Author(s):  
Xiao Yu Song ◽  
Huai You Li ◽  
Wen Juan Shi

In this paper, based on the fact of water resources shortage, environmental degradation in Chanba River basin, using multi-objective optimization theory, we established the ecology-oriented water resources optimal allocation model and achieved the coupling between water quantity and quality. According to supply and demand of water resources in two levels of years (2020, 2030) and the guaranteed rate 75%, developed model parameters (coefficients), called the optimization function to solve it. The model is applied to Chanba River basin, indicating that the model is reasonable, efficient algorithms The optimal allocation model and the results reflect the concept of sustainable development for ecological, economic efficiency and help to improve water supply reliability, the sustainable use of water resources planning and management provides a basis for decision making.


Sign in / Sign up

Export Citation Format

Share Document