scholarly journals Study on the Permeability Change Characteristic of Gas-Bearing Coal under Cyclic Loading and Unloading Path

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fakai Wang ◽  
Xuelong Li ◽  
Bo Cui ◽  
Jian Hao ◽  
Peng Chen

Using the self-developed three-axis servo fluid-solid coupling system with gas-solid coupling of gas-bearing coal, the variation law of the permeability of gas coal under the stress cycle loading and unloading path was studied. The qualitative and quantitative relationships between permeability, axial force, and radial stress of gas-bearing coals were established, and the variation law of permeability of gas-bearing coals was discussed. The results show that (1) different cyclic loading and unloading stress paths correspond to the permeability characteristics of different gas-bearing coals. (2) Permeability of gas-bearing coal decreases with the increase of axial stress and radial stress, and it has a logarithmic function with axial stress and radial stress. This shows that axial stress and radial stress are important factors affecting the permeability characteristics of gas-bearing coal. (3) Under the same stress loading and unloading conditions, the axial stress is less than radial stress on the permeability of gas-bearing coal. In the cyclic loading and unloading axial stress process, the permeability of the gas-bearing coal varies by a smaller extent than the cyclically unloaded confining force. (4) The cumulative damage rate of gas-bearing coal under axial stress gradually increases with the increase of the number of cycles of loading and unloading, and the rate of the cumulative damage rate of permeability is less than the corresponding rate of radial stress.

2018 ◽  
Vol 27 (8) ◽  
pp. 2530-2536 ◽  
Author(s):  
J. Glasbrenner ◽  
C. Domnick ◽  
M. J. Raschke ◽  
T. Willinghöfer ◽  
C. Kittl ◽  
...  

2018 ◽  
Vol 10 (09) ◽  
pp. 1850095 ◽  
Author(s):  
H. Wang ◽  
D. Tang ◽  
D. Y. Li ◽  
Y. H. Peng ◽  
P. D. Wu

Magnesium alloys exhibit significant inelastic behavior during unloading, especially when twinning and detwinning are involved. It is commonly accepted that noteworthy inelastic behavior will be observed during unloading if twinning occurs during previous loading. However, this phenomenon is not always observed for Mg sheets with strong rolled texture. Therefore, the inelasticity of AZ31B rolled sheets with different rolled textures during cyclic loading-unloading are investigated by elastic viscoplastic self-consistent polycrystal plasticity model. The incorporation of the twinning and detwinning model enables the treatment of detwinning, which plays an important role for inelastic behavior during unloading. The effects of texture, deformation history, and especially twinning and detwinning on the inelastic behaviors are carefully investigated and found to be remarkable. The simulated results are in agreement with the available experimental observations, which reveals that the inelastic behavior for strongly rolled sheets is very different than the extruded bars.


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986102
Author(s):  
Dongxu Liang ◽  
Nong Zhang ◽  
Lixiang Xie ◽  
Guangming Zhao ◽  
Deyu Qian

It is of significance to study the damage and destruction of rock under cyclic loading in geotechnical engineering. We determined the trends in damage evolution of sandstone under constant-amplitude and tiered cyclic loading and unloading under uniaxial compression. The results of the study show that (1) the variation of acoustic-emission events was consistent with the stress curves and 89% of all acoustic-emission events occurred during the cycling stages. The observed Kaiser effect was more notable in tiered cycling. (2) The damage variable increased sharply in the cycling stages and its increment was 0.07 higher for tiered cycling than constant-amplitude cycling. Sandstone exhibited greater damage under tiered cyclic loading and unloading. (3) Equations for the evolution of the damage variable under the two cycle modes were obtained by fitting of experimental data. (4) The fractal dimensions of the constant-amplitude cycle were larger than those of the tiered cycle. The process of damage and destruction presents a trend of reducing fractal dimension. The damage accumulation of sandstone under tiered cycling was faster than under constant-amplitude cycling. These results provide references for damage and early warning of rock under both constant-amplitude and tiered cyclic loading and unloading.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lewen Wu ◽  
Keping Zhou ◽  
Feng Gao ◽  
Zhongyuan Gu ◽  
Chun Yang

In the operations of underground rock engineering, such as mining, the formation of goafs is often accompanied by unloading and energy effects. In this study, a cyclic loading and unloading stress test is carried out to analyze the strength characteristics of the loaded samples under different loading and unloading ranges as well as different numbers of cycles. The rock force is accompanied by substantial energy changes. To better fit the energy analysis under cyclic loading and unloading conditions, thermal infrared radiation characteristic analysis is performed during rock loading and unloading. An infrared radiation camera is adopted to detect the infrared characteristics of the rock force process after cyclic loading and unloading. Multiangle detection is implemented on the temperature, temperature field, and frequency histogram. The analysis shows that cyclic loading and unloading first strengthen and then weaken the rock. Moreover, the failure caused by the local stress concentration leads to a sharp increase in the temperature. There are significant temperature fluctuations before and after failure, and the temperature field after failure can be divided into three zones, namely, the normal temperature zone, heating zone, and mutational temperature zone, to comprehensively reflect that rock compression failure which is accompanied by the process of energy accumulation and release. On the basis of infrared energy analysis, the index of the energy release rate is introduced, and the loading and unloading analysis model is constructed. The research results reveal that rock failure is accompanied by the process of energy accumulation and release, which provides evidence for the analysis of the spatial stability of the rock mass under cyclic loading and unloading conditions and engineering excavation.


Sign in / Sign up

Export Citation Format

Share Document