scholarly journals Lack of Catch-Up Growth with Growth Hormone Treatment in a Child Born Small for Gestational Age Leading to a Diagnosis of Noonan Syndrome with a Pathogenic PTPN11 Variant

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Daniel J. Olivieri ◽  
Lauren J. Massingham ◽  
Jennifer L. Schwab ◽  
Jose Bernardo Quintos

Background. Growth hormone (GH) treatment increases the adult height of short children born small for gestational age (SGA). Catch-up growth is associated with a younger age, shorter height, and prepubertal status at the onset of GH treatment. We report a 12 11/12-year-old girl born SGA who received GH for 5 years without catch-up growth and was diagnosed with Noonan Syndrome (NS). Results. A 5-year-and-9-month-old 46, XX girl born SGA was started on GH treatment at a dose of 0.32 mg/kg/week. Her midparental target height is 158.6 cm. Endocrine work up showed an IGF-1 level 69 ng/ml (Normal (N): 55–238 ng/ml), IGFBP3 2.6 mg/L (N: 1.9–5.2 mg/L), TSH 3.2 mIU/L (N: 0.35–5.5 mIU/L), and a normal skeletal survey. Height was 96 cm (0.1%; Ht SDS −2.9), weight 14 kgs (1%; Wt SDS −2.3), and Tanner 1 breast and pubic hair were observed. Due to the poor catch-up growth on GH treatment, she was referred to Genetics to elucidate genetic or syndromic causes of short stature. She was noted to have posteriorly rotated ears and slight down slanting of the palpebral fissures. Genetic findings showed a heterozygous pathogenic variant in PTPN11 (c.922A > G (p.Asn308Asp)) diagnostic for NS. This finding is de novo given negative parental testing. She was noted to have a heterozygous missense variant of unknown significance (VUS) in FGFR3: c.746C > A (p.Ser249Tyr). FGFR3 is associated with multiple skeletal dysplasias including thanatophoric dysplasia, achondroplasia, and Crouzon syndrome and hypochondroplasia. Clinical correlation is poor for these syndromes. Conclusion. Diminished catch-up growth and response to GH treatment in a child born SGA led to the diagnosis of NS. The concomitant diagnosis of SGA and NS may have affected the responsiveness of this child to the growth promoting effect of GH treatment.

1997 ◽  
Vol 48 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Patrick Wilton ◽  
Kerstin Albertsson-Wikland ◽  
Otfrid Butenandt ◽  
Jean-Louis Chaussain ◽  
Francis de Zegher ◽  
...  

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Gianluca Tamaro ◽  
Mariagrazia Pizzul ◽  
Giuliana Gaeta ◽  
Raffaella Servello ◽  
Marina Trevisan ◽  
...  

Abstract Background Recombinant human growth hormone (rhGH) is approved in Europe as a treatment for short children born small for gestational age (SGA) since 2003. However, no study evaluated the prevalence of SGA children with short stature who qualify for rhGH in Europe so far. This study aimed to investigate in an Italian population the prevalence of children born SGA, of short stature in children born SGA, and of SGA children who qualify for rhGH treatment at 4 years of age. Methods We conducted a population-based study on primary care pediatricians’ databases in Trieste, Italy. Data was collected on 3769 children born between 2004 and 2014. SGA was defined as birth weight and/or birth length ≤ − 2 SDS. Data on height and weight were registered at the closest well-being visit to 1, 2, 3, 4 years of age. Short stature was defined as height ≤ − 2 SDS. Short children born SGA who qualify for rhGH treatment were identified according to Note AIFA #39 criteria (age ≥ 4 years; height ≤ − 2.5 SDS; growth velocity < 50th percentile). Results Full data at birth were available for 3250 children. The SGA prevalence was 3.6% (0.8% SGA for weight, 2.2% SGA for length, 0.6% SGA for both weight and length). The prevalence of short stature among SGA children was 9% at 1 year of age, 6% at 2 years (significantly higher in preterm in the first 2 years), 4% at 3 years, 3% at 4 years (all born at term). At 4 years of age, median height SDS was − 0.52. One child born SGA was eligible for GH treatment (0.8% among SGA children). Conclusions The prevalence in a general pediatric population of children born SGA who qualify for GH treatment was 1:3250. Although the prevalence of SGA in our population was similar to previous studies, catch-up growth was recorded earlier in our sample compared to previous reports, and term babies had late catch-up. Height SDS of children born SGA at 4 years of age was lower than expected (− 0.52 SDS).


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jung-Eun Moon ◽  
Cheol Woo Ko

Purpose. Growth hormone (GH) treatment is recommended to improve growth and psychosocial problems in short stature children born small for gestational age (SGA). Although GH therapy in these patients has been extensively studied, the impact of therapy according to delays in bone age (BA) is not known well. Objective. To investigate the effects of GH therapy in SGA patients with short stature according to BA delay. Methods. We retrospectively analyzed changes in height SD score (SDS) and BA/chronological age (CA) after 6 and 12 months of GH therapy in patients grouped according to BA delay. We studied 27 SGA children with short stature in the pediatric endocrinology clinic of Kyungpook National University Children’s Hospital. Results. Of the 27 patients, 9 had <2 years of BA delay, while 18 had >2 years of delay. There were no significant differences between the two groups in terms of gestational age and weight at birth, height SDS, IGF-1 SDS, and growth hormone dosage at the beginning of therapy. However, height SDS increased significantly in the group with >2 years of BA delay after 6 months of GH therapy (−2.50 ± 0.61 vs −1.87 ± 0.82; p=0.037) and 12 months (−2.27 ± 0.70 vs −1.63 ± 0.65; p=0.002). When height SDS was compared between with and without GHD, there were no significant differences. Conclusions. Delayed BA (>2 years) may impact the response to GH treatment in SGA children with short stature.


Sign in / Sign up

Export Citation Format

Share Document