scholarly journals Prevalence of children born small for gestational age with short stature who qualify for growth hormone treatment

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Gianluca Tamaro ◽  
Mariagrazia Pizzul ◽  
Giuliana Gaeta ◽  
Raffaella Servello ◽  
Marina Trevisan ◽  
...  

Abstract Background Recombinant human growth hormone (rhGH) is approved in Europe as a treatment for short children born small for gestational age (SGA) since 2003. However, no study evaluated the prevalence of SGA children with short stature who qualify for rhGH in Europe so far. This study aimed to investigate in an Italian population the prevalence of children born SGA, of short stature in children born SGA, and of SGA children who qualify for rhGH treatment at 4 years of age. Methods We conducted a population-based study on primary care pediatricians’ databases in Trieste, Italy. Data was collected on 3769 children born between 2004 and 2014. SGA was defined as birth weight and/or birth length ≤ − 2 SDS. Data on height and weight were registered at the closest well-being visit to 1, 2, 3, 4 years of age. Short stature was defined as height ≤ − 2 SDS. Short children born SGA who qualify for rhGH treatment were identified according to Note AIFA #39 criteria (age ≥ 4 years; height ≤ − 2.5 SDS; growth velocity < 50th percentile). Results Full data at birth were available for 3250 children. The SGA prevalence was 3.6% (0.8% SGA for weight, 2.2% SGA for length, 0.6% SGA for both weight and length). The prevalence of short stature among SGA children was 9% at 1 year of age, 6% at 2 years (significantly higher in preterm in the first 2 years), 4% at 3 years, 3% at 4 years (all born at term). At 4 years of age, median height SDS was − 0.52. One child born SGA was eligible for GH treatment (0.8% among SGA children). Conclusions The prevalence in a general pediatric population of children born SGA who qualify for GH treatment was 1:3250. Although the prevalence of SGA in our population was similar to previous studies, catch-up growth was recorded earlier in our sample compared to previous reports, and term babies had late catch-up. Height SDS of children born SGA at 4 years of age was lower than expected (− 0.52 SDS).

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jung-Eun Moon ◽  
Cheol Woo Ko

Purpose. Growth hormone (GH) treatment is recommended to improve growth and psychosocial problems in short stature children born small for gestational age (SGA). Although GH therapy in these patients has been extensively studied, the impact of therapy according to delays in bone age (BA) is not known well. Objective. To investigate the effects of GH therapy in SGA patients with short stature according to BA delay. Methods. We retrospectively analyzed changes in height SD score (SDS) and BA/chronological age (CA) after 6 and 12 months of GH therapy in patients grouped according to BA delay. We studied 27 SGA children with short stature in the pediatric endocrinology clinic of Kyungpook National University Children’s Hospital. Results. Of the 27 patients, 9 had <2 years of BA delay, while 18 had >2 years of delay. There were no significant differences between the two groups in terms of gestational age and weight at birth, height SDS, IGF-1 SDS, and growth hormone dosage at the beginning of therapy. However, height SDS increased significantly in the group with >2 years of BA delay after 6 months of GH therapy (−2.50 ± 0.61 vs −1.87 ± 0.82; p=0.037) and 12 months (−2.27 ± 0.70 vs −1.63 ± 0.65; p=0.002). When height SDS was compared between with and without GHD, there were no significant differences. Conclusions. Delayed BA (>2 years) may impact the response to GH treatment in SGA children with short stature.


1997 ◽  
Vol 48 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Patrick Wilton ◽  
Kerstin Albertsson-Wikland ◽  
Otfrid Butenandt ◽  
Jean-Louis Chaussain ◽  
Francis de Zegher ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Irène Netchine ◽  
Manouk van der Steen ◽  
Abel López-Bermejo ◽  
Ekaterina Koledova ◽  
Mohamad Maghnie

Children born small for gestational age (SGA) comprise a heterogeneous group due to the varied nature of the cause. Approximately 85–90% have catch-up growth within the first 4 postnatal years, while the remainder remain short. In later life, children born SGA have an increased risk to develop metabolic abnormalities, including visceral adiposity, insulin resistance, and cardiovascular problems, and may have impaired pubertal onset and growth. The third “360° European Meeting on Growth and Endocrine Disorders” in Rome, Italy, in February 2018, funded by Merck KGaA, Germany, included a session that examined aspects of short children born SGA, with three presentations followed by a discussion period, on which this report is based. Children born SGA who remain short are eligible for GH treatment, which is an approved indication. GH treatment increases linear growth and can also improve some metabolic abnormalities. After stopping GH at near-adult height, metabolic parameters normalize, but pharmacological effects on lean body mass and fat mass are lost; continued monitoring of body composition and metabolic changes may be necessary. Guidelines have been published on diagnosis and management of children with Silver-Russell syndrome, who comprise a specific group of those born SGA; these children rarely have catch-up growth and GH treatment initiation as early as possible is recommended. Early and moderate pubertal growth spurt can occur in children born SGA, including those with Silver-Russell syndrome, and reduce adult height. Treatments that delay puberty, specifically metformin and gonadotropin releasing hormone analogs in combination with GH, have been proposed, but are used off-label, currently lack replication of data, and require further studies of efficacy and safety.


2019 ◽  
Vol 45 (1) ◽  
Author(s):  
Gianluca Tornese ◽  
Flavia Pricci ◽  
Maria Chiara Pellegrin ◽  
Marika Villa ◽  
Daniela Rotondi ◽  
...  

Abstract Recombinant human growth hormone (rhGH) is an approved and effective treatment for short children born small for gestational age (SGA). Prevalence of children eligible for treatment as SGA is reported to be 1:1800. The latest data from the National Registry of Growth Hormone therapy (RNAOC) showed that the number of children treated with SGA indication is still small (prevalence 0.37/100,000) and these children are significantly less reported than those treated for growth hormone deficiency (GHD), although GHD prevalence is 1:4000–1:10,000. This means that many short children born SGA are still not properly identified, and therefore not treated with rhGH, or misdiagnosed as GHD. This article provides some practical tools for the identification of children eligible for rhGH treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Daniel J. Olivieri ◽  
Lauren J. Massingham ◽  
Jennifer L. Schwab ◽  
Jose Bernardo Quintos

Background. Growth hormone (GH) treatment increases the adult height of short children born small for gestational age (SGA). Catch-up growth is associated with a younger age, shorter height, and prepubertal status at the onset of GH treatment. We report a 12 11/12-year-old girl born SGA who received GH for 5 years without catch-up growth and was diagnosed with Noonan Syndrome (NS). Results. A 5-year-and-9-month-old 46, XX girl born SGA was started on GH treatment at a dose of 0.32 mg/kg/week. Her midparental target height is 158.6 cm. Endocrine work up showed an IGF-1 level 69 ng/ml (Normal (N): 55–238 ng/ml), IGFBP3 2.6 mg/L (N: 1.9–5.2 mg/L), TSH 3.2 mIU/L (N: 0.35–5.5 mIU/L), and a normal skeletal survey. Height was 96 cm (0.1%; Ht SDS −2.9), weight 14 kgs (1%; Wt SDS −2.3), and Tanner 1 breast and pubic hair were observed. Due to the poor catch-up growth on GH treatment, she was referred to Genetics to elucidate genetic or syndromic causes of short stature. She was noted to have posteriorly rotated ears and slight down slanting of the palpebral fissures. Genetic findings showed a heterozygous pathogenic variant in PTPN11 (c.922A > G (p.Asn308Asp)) diagnostic for NS. This finding is de novo given negative parental testing. She was noted to have a heterozygous missense variant of unknown significance (VUS) in FGFR3: c.746C > A (p.Ser249Tyr). FGFR3 is associated with multiple skeletal dysplasias including thanatophoric dysplasia, achondroplasia, and Crouzon syndrome and hypochondroplasia. Clinical correlation is poor for these syndromes. Conclusion. Diminished catch-up growth and response to GH treatment in a child born SGA led to the diagnosis of NS. The concomitant diagnosis of SGA and NS may have affected the responsiveness of this child to the growth promoting effect of GH treatment.


Author(s):  
José I. Labarta ◽  
Antonio de Arriba ◽  
Marta Ferrer ◽  
Marisa Loranca ◽  
José María Martos ◽  
...  

AbstractObjectivesTo study the efficacy and influence on metabolism of recombinant human growth hormone (rhGH) treatment in short children born small for gestational age (SGA).MethodsRetrospective, observational, multicenter study in 305 short children born SGA, treated with rhGH during a mean ± SD of 5.03 ± 1.73 years at a mean ± SD dose of 37 ± 8 μg/kg/day. Auxological and metabolic assessment including glucose and lipids profile were collected.ResultsMean ± SD age at the start of treatment was 7.11 ± 2.78 years. Height and weight improved significantly until the end of treatment from mean −2.72 (CI95%: −2.81 to −2.63) standard deviation score (SDS) to −1.16 (CI95%: −1.44 to −0.88) SDS and from −1.62 (CI95%: −1.69 to −1.55) SDS to −0.94 (CI95%: −1.14 to −0.74) SDS respectively. Mean height gain was 1.27 (CI95%: 0.99–1.54) SDS. Prepubertal patients showed higher height gain than pubertal children (mean [CI95%] = 1.44 [CI95%: 1.14–1.74] vs. 0.73 [CI95%: 0.22–1.24], p=0.02). Height gain SDS during treatment negatively correlated with chronological age (CA) and bone age (BA) delay and positively correlated with duration of treatment, height gain during first year of treatment, years on prepubertal treatment and height SDS from target height (TH). Glucose, insulin, and triglycerides increased significantly but remained within the normal range. Total and LDL-cholesterol decreased significantly, and HDL-cholesterol remained unchanged.ConclusionsrhGH treatment in short SGA children effectively normalized height in most of the patients and showed a safe metabolic profile. Children who benefit the most are those with greater height SDS distance from TH, BA delay, longer duration of treatment and prepubertal treatment initiation.


Sign in / Sign up

Export Citation Format

Share Document