scholarly journals A Sparsity Preestimated Adaptive Matching Pursuit Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xinhe Zhang ◽  
Yufeng Liu ◽  
Xin Wang

In the matching pursuit algorithm of compressed sensing, the traditional reconstruction algorithm needs to know the signal sparsity. The sparsity adaptive matching pursuit (SAMP) algorithm can adaptively approach the signal sparsity when the sparsity is unknown. However, the SAMP algorithm starts from zero and iterates several times with a fixed step size to approximate the true sparsity, which increases the runtime. To increase the run speed, a sparsity preestimated adaptive matching pursuit (SPAMP) algorithm is proposed in this paper. Firstly, the sparsity preestimated strategy is used to estimate the sparsity, and then the signal is reconstructed by the SAMP algorithm with the preestimated sparsity as the iterative initial value. The method reconstructs the signal from the preestimated sparsity, which reduces the number of iterations and greatly speeds up the run efficiency.


2021 ◽  
Vol 11 (4) ◽  
pp. 1435
Author(s):  
Xue Bi ◽  
Lu Leng ◽  
Cheonshik Kim ◽  
Xinwen Liu ◽  
Yajun Du ◽  
...  

Image reconstruction based on sparse constraints is an important research topic in compressed sensing. Sparsity adaptive matching pursuit (SAMP) is a greedy pursuit reconstruction algorithm, which reconstructs signals without prior information of the sparsity level and potentially presents better reconstruction performance than other greedy pursuit algorithms. However, SAMP still suffers from being sensitive to the step size selection at high sub-sampling ratios. To solve this problem, this paper proposes a constrained backtracking matching pursuit (CBMP) algorithm for image reconstruction. The composite strategy, including two kinds of constraints, effectively controls the increment of the estimated sparsity level at different stages and accurately estimates the true support set of images. Based on the relationship analysis between the signal and measurement, an energy criterion is also proposed as a constraint. At the same time, the four-to-one rule is improved as an extra constraint. Comprehensive experimental results demonstrate that the proposed CBMP yields better performance and further stability than other greedy pursuit algorithms for image reconstruction.



Author(s):  
Dongxue Lu ◽  
Zengke Wang

This paper proposed a novel algorithm which is called the joint step-size matching pursuit algorithm (JsTMP) to solve the issue of calculating the unknown signal sparsity. The proposed algorithm falls into the general category of greedy algorithms. In the process of iteration, this method can adjust the step size and correct the indices of the estimated support that were erroneously selected in a dynamical way. And it uses the dynamical step sizes to increase the estimated sparsity level when the energy of the residual is less than half of that of the measurement vectory. The main innovations include two aspects: 1) The high probability of exact reconstruction, comparable to other classical greedy algorithms reconstruct arbitrary spare signal. 2) The sinh() function is used to adjust the right step with the value of the objective function in the late iteration. Finally, by following this approach, the simulation results show that the proposed algorithm outperforms state of- the-art similar algorithms used for solving the same problem.



2018 ◽  
Vol 173 ◽  
pp. 03073
Author(s):  
Liu Yang ◽  
Ren Qinghua ◽  
Xu Bingzheng ◽  
Li Xiazhao

In order to solve the problem that the wideband compressive sensing reconstruction algorithm cannot accurately recover the signal under the condition of blind sparsity in the low SNR environment of the transform domain communication system. This paper use band occupancy rates to estimate sparseness roughly, at the same time, use the residual ratio threshold as iteration termination condition to reduce the influence of the system noise. Therefore, an ICoSaMP(Improved Compressive Sampling Matching Pursuit) algorithm is proposed. The simulation results show that compared with CoSaMP algorithm, the ICoSaMP algorithm increases the probability of reconstruction under the same SNR environment and the same sparse degree. The mean square error under the blind sparsity is reduced.





2019 ◽  
Vol 78 (23) ◽  
pp. 33969-33984
Author(s):  
Zong Meng ◽  
Zuozhou Pan ◽  
Ying Shi ◽  
Zijun Chen


2014 ◽  
Vol 635-637 ◽  
pp. 971-977 ◽  
Author(s):  
Rui Yuan ◽  
Jun Yue ◽  
Hong Xiu Gao

The DOA estimation by the model of four elements in the square array has studied based on the theory of compressed sensing. Using matching pursuit algorithm and orthogonality matching pursuit algorithm, the computer simulation was presented. The results show the method of DOA estimation by compressed sensing theory is simple, practical and low computational complexity.



Sign in / Sign up

Export Citation Format

Share Document