scholarly journals Chinese Medical Entity Recognition Model Based on Character and Word Vector Fusion

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qinghui Zhang ◽  
Lei Hou ◽  
Pengtao Lv ◽  
Mengya Zhang ◽  
Hongwei Yang

The medical information carried in electronic medical records has high clinical research value, and medical named entity recognition is the key to extracting valuable information from large-scale medical texts. At present, most of the studies on Chinese medical named entity recognition are based on character vector model or word vector model. Owing to the complexity and specificity of Chinese text, the existing methods may fail to achieve good performance. In this study, we propose a Chinese medical named entity recognition method that fuses character and word vectors. The method expresses Chinese texts as character vectors and word vectors separately and fuses them in the model for features. The proposed model can effectively avoid the problems of missing character vector information and inaccurate word vector partitioning. On the CCKS 2019 dataset for the named entity recognition task of Chinese electronic medical records, the proposed model achieves good performance and can effectively improve the accuracy of Chinese medical named entity recognition compared with other baseline models.

2019 ◽  
Vol 9 (18) ◽  
pp. 3658 ◽  
Author(s):  
Jianliang Yang ◽  
Yuenan Liu ◽  
Minghui Qian ◽  
Chenghua Guan ◽  
Xiangfei Yuan

Clinical named entity recognition is an essential task for humans to analyze large-scale electronic medical records efficiently. Traditional rule-based solutions need considerable human effort to build rules and dictionaries; machine learning-based solutions need laborious feature engineering. For the moment, deep learning solutions like Long Short-term Memory with Conditional Random Field (LSTM–CRF) achieved considerable performance in many datasets. In this paper, we developed a multitask attention-based bidirectional LSTM–CRF (Att-biLSTM–CRF) model with pretrained Embeddings from Language Models (ELMo) in order to achieve better performance. In the multitask system, an additional task named entity discovery was designed to enhance the model’s perception of unknown entities. Experiments were conducted on the 2010 Informatics for Integrating Biology & the Bedside/Veterans Affairs (I2B2/VA) dataset. Experimental results show that our model outperforms the state-of-the-art solution both on the single model and ensemble model. Our work proposes an approach to improve the recall in the clinical named entity recognition task based on the multitask mechanism.


Author(s):  
Yu Wang ◽  
Yining Sun ◽  
Zuchang Ma ◽  
Lisheng Gao ◽  
Yang Xu

Electronic medical records (EMRs) contain valuable information about the patients, such as clinical symptoms, diagnostic results, and medications. Named entity recognition (NER) aims to recognize entities from unstructured text, which is the initial step toward the semantic understanding of the EMRs. Extracting medical information from Chinese EMRs could be a more complicated task because of the difference between English and Chinese. Some researchers have noticed the importance of Chinese NER and used the recurrent neural network or convolutional neural network (CNN) to deal with this task. However, it is interesting to know whether the performance could be improved if the advantages of the RNN and CNN can be both utilized. Moreover, RoBERTa-WWM, as a pre-training model, can generate the embeddings with word-level features, which is more suitable for Chinese NER compared with Word2Vec. In this article, we propose a hybrid model. This model first obtains the entities identified by bidirectional long short-term memory and CNN, respectively, and then uses two hybrid strategies to output the final results relying on these entities. We also conduct experiments on raw medical records from real hospitals. This dataset is provided by the China Conference on Knowledge Graph and Semantic Computing in 2019 (CCKS 2019). Results demonstrate that the hybrid model can improve performance significantly.


2021 ◽  
pp. 1-13
Author(s):  
Xia Li ◽  
Qinghua Wen ◽  
Zengtao Jiao ◽  
Jiangtao Zhang

Abstract The China Conference on Knowledge Graph and Semantic Computing (CCKS) 2020 Evaluation Task 3 presented clinical named entity recognition and event extraction for the Chinese electronic medical records. Two annotated data sets and some other additional resources for these two subtasks were provided for participators. This evaluation competition attracted 354 teams and 46 of them successfully submitted the valid results. The pre-trained language models are widely applied in this evaluation task. Data argumentation and external resources are also helpful.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Lejun Gong ◽  
Zhifei Zhang ◽  
Shiqi Chen

Background. Clinical named entity recognition is the basic task of mining electronic medical records text, which are with some challenges containing the language features of Chinese electronic medical records text with many compound entities, serious missing sentence components, and unclear entity boundary. Moreover, the corpus of Chinese electronic medical records is difficult to obtain. Methods. Aiming at these characteristics of Chinese electronic medical records, this study proposed a Chinese clinical entity recognition model based on deep learning pretraining. The model used word embedding from domain corpus and fine-tuning of entity recognition model pretrained by relevant corpus. Then BiLSTM and Transformer are, respectively, used as feature extractors to identify four types of clinical entities including diseases, symptoms, drugs, and operations from the text of Chinese electronic medical records. Results. 75.06% Macro-P, 76.40% Macro-R, and 75.72% Macro-F1 aiming at test dataset could be achieved. These experiments show that the Chinese clinical entity recognition model based on deep learning pretraining can effectively improve the recognition effect. Conclusions. These experiments show that the proposed Chinese clinical entity recognition model based on deep learning pretraining can effectively improve the recognition performance.


Author(s):  
Zeqi Tan ◽  
Yongliang Shen ◽  
Shuai Zhang ◽  
Weiming Lu ◽  
Yueting Zhuang

Named entity recognition (NER) is a widely studied task in natural language processing. Recently, a growing number of studies have focused on the nested NER. The span-based methods, considering the entity recognition as a span classification task, can deal with nested entities naturally. But they suffer from the huge search space and the lack of interactions between entities. To address these issues, we propose a novel sequence-to-set neural network for nested NER. Instead of specifying candidate spans in advance, we provide a fixed set of learnable vectors to learn the patterns of the valuable spans. We utilize a non-autoregressive decoder to predict the final set of entities in one pass, in which we are able to capture dependencies between entities. Compared with the sequence-to-sequence method, our model is more suitable for such unordered recognition task as it is insensitive to the label order. In addition, we utilize the loss function based on bipartite matching to compute the overall training loss. Experimental results show that our proposed model achieves state-of-the-art on three nested NER corpora: ACE 2004, ACE 2005 and KBP 2017. The code is available at https://github.com/zqtan1024/sequence-to-set.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qiuli Qin ◽  
Shuang Zhao ◽  
Chunmei Liu

Because of difficulty processing the electronic medical record data of patients with cerebrovascular disease, there is little mature recognition technology capable of identifying the named entity of cerebrovascular disease. Excellent research results have been achieved in the field of named entity recognition (NER), but there are several problems in the pre processing of Chinese named entities that have multiple meanings, of which neglecting the combination of contextual information is one. Therefore, to extract five categories of key entity information for diseases, symptoms, body parts, medical examinations, and treatment in electronic medical records, this paper proposes the use of a BERT-BiGRU-CRF named entity recognition method, which is applied to the field of cerebrovascular diseases. The BERT layer first converts the electronic medical record text into a low-dimensional vector, then uses this vector as the input to the BiGRU layer to capture contextual features, and finally uses conditional random fields (CRFs) to capture the dependency between adjacent tags. The experimental results show that the F1 score of the model reaches 90.38%.


2020 ◽  
Author(s):  
Yongbin Li ◽  
Xiaohua Wang ◽  
Linhu Hui ◽  
Liping Zou ◽  
Hongjin Li ◽  
...  

BACKGROUND Clinical named entity recognition (CNER), whose goal is to automatically identify clinical entities in electronic medical records (EMRs), is an important research direction of clinical text data mining and information extraction. The promotion of CNER can provide support for clinical decision making and medical knowledge base construction, which could then improve overall medical quality. Compared with English CNER, and due to the complexity of Chinese word segmentation and grammar, Chinese CNER was implemented later and is more challenging. OBJECTIVE With the development of distributed representation and deep learning, a series of models have been applied in Chinese CNER. Different from the English version, Chinese CNER is mainly divided into character-based and word-based methods that cannot make comprehensive use of EMR information and cannot solve the problem of ambiguity in word representation. METHODS In this paper, we propose a lattice long short-term memory (LSTM) model combined with a variant contextualized character representation and a conditional random field (CRF) layer for Chinese CNER: the Embeddings from Language Models (ELMo)-lattice-LSTM-CRF model. The lattice LSTM model can effectively utilize the information from characters and words in Chinese EMRs; in addition, the variant ELMo model uses Chinese characters as input instead of the character-encoding layer of the ELMo model, so as to learn domain-specific contextualized character embeddings. RESULTS We evaluated our method using two Chinese CNER datasets from the China Conference on Knowledge Graph and Semantic Computing (CCKS): the CCKS-2017 CNER dataset and the CCKS-2019 CNER dataset. We obtained F1 scores of 90.13% and 85.02% on the test sets of these two datasets, respectively. CONCLUSIONS Our results show that our proposed method is effective in Chinese CNER. In addition, the results of our experiments show that variant contextualized character representations can significantly improve the performance of the model.


Sign in / Sign up

Export Citation Format

Share Document