scholarly journals A Car-Following Model Based on Safety Margin considering ADAS and Driving Experience

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yugang Wang ◽  
Nengchao Lyu

Existing studies had shown that advanced driver assistance systems (ADAS) and driver individual characteristics can significantly affect driving behavior. Therefore, it is necessary to consider these factors when building the car-following model. In this study, we established a car-following model based on risk homeostasis theory, which uses safety margin (SM) as the risk level quantization parameter. Firstly, three-way Analysis of Variance (ANOVA) was used to analyze the influencing factors of car-following behavior. The results showed that ADAS and driving experience have a significant effect on the drivers’ car-following behavior. Then, according to these two significant factors, the car-following model was established. The statistical method was used to calibrate the parameter reaction response τ. Other four parameters (SMDL, SMDH, α1, and α2) were calibrated using a classical genetic algorithm, and the effects of ADAS and driving experience in these four parameters were analyzed using T-test. Finally, the proposed model was compared with the GHR model, and the result showed that the proposed model has a smaller Root Mean Square Error (RMSE) than the GHR model. The proposed model is a method of simulating different driving behaviors that are affected by ADAS and individual characteristics. Considering more driver individual characteristics, such as driving style, is the future research goal.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Guangquan Lu ◽  
Bo Cheng ◽  
Yunpeng Wang ◽  
Qingfeng Lin

This study attempts to elucidate individual car-following behavior using risk homeostasis theory (RHT). On the basis of this theory and the stimulus-response concept, we develop a desired safety margin (DSM) model. Safety margin, defined as the level of perceived risk in car-following processes, is proposed and considered to be a stimulus parameter. Acceleration is assessed in accordance with the difference between the perceived safety margin (perceived level of risk) and desired safety margin (acceptable level of risk) of a driver in a car-following situation. Sixty-three cases selected from Next Generation Simulation (NGSIM) are used to calibrate the parameters of the proposed model for general car-following behavior. Other eight cases with two following cars taken from NGSIM are used to validate the model. A car-following case with stop-and-go processes is also used to demonstrate the performance of the proposed model. The simulation results are then compared with the calculations derived using the Gazis-Herman-Rothery (GHR) model. As a result, the DSM and GHR models yield similar results and the proposed model is effective for simulation of car following. By adjusting model parameters, the proposed model can simulate different driving behaviors. The proposed model gives a new way to explain car-following process by RHT.


Optimization of business process assists in efficient organization of business process. For the success of optimization of business process, a simulation model based on gap processes for the analysis of buyers' burstiness in business process has been proposed. However, the model has to be validated. The aim of the research is to implement a validation approach to the simulation model based on gap processes for the optimization of business process underpinning elaboration of a new research question on the model validity. The meaning of the key concepts of “validation,” “model validation,” and “model validation approach” is studied. The results of the present research show that the application of real system measurements validates the simulation model for the optimization of business process. The novel contribution of the manuscript is revealed in the newly created research question on the proposed model validity. Directions of future research are proposed.


2020 ◽  
Vol 146 (9) ◽  
pp. 04020104
Author(s):  
Tie-Qiao Tang ◽  
Yong Gui ◽  
Jian Zhang ◽  
Tao Wang

2018 ◽  
Vol 51 (31) ◽  
pp. 859-862
Author(s):  
Jingwei Li ◽  
Changli Zhao ◽  
Hongwei Yue ◽  
Wenjun Fu

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5034
Author(s):  
Yang Zhou ◽  
Rui Fu ◽  
Chang Wang ◽  
Ruibin Zhang

Building a human-like car-following model that can accurately simulate drivers’ car-following behaviors is helpful to the development of driving assistance systems and autonomous driving. Recent studies have shown the advantages of applying reinforcement learning methods in car-following modeling. However, a problem has remained where it is difficult to manually determine the reward function. This paper proposes a novel car-following model based on generative adversarial imitation learning. The proposed model can learn the strategy from drivers’ demonstrations without specifying the reward. Gated recurrent units was incorporated in the actor-critic network to enable the model to use historical information. Drivers’ car-following data collected by a test vehicle equipped with a millimeter-wave radar and controller area network acquisition card was used. The participants were divided into two driving styles by K-means with time-headway and time-headway when braking used as input features. Adopting five-fold cross-validation for model evaluation, the results show that the proposed model can reproduce drivers’ car-following trajectories and driving styles more accurately than the intelligent driver model and the recurrent neural network-based model, with the lowest average spacing error (19.40%) and speed validation error (5.57%), as well as the lowest Kullback-Leibler divergences of the two indicators used for driving style clustering.


Sign in / Sign up

Export Citation Format

Share Document