scholarly journals Eternal Domination of Generalized Petersen Graph

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ramy Shaheen ◽  
Ali Kassem

An eternal dominating set of a graph G is a set of guards distributed on the vertices of a dominating set so that each vertex can be occupied by one guard only. These guards can defend any infinite series of attacks; an attack is defended by moving one guard along an edge from its position to the attacked vertex. We consider the “all guards move” of the eternal dominating set problem, in which one guard has to move to the attacked vertex and all the remaining guards are allowed to move to an adjacent vertex or stay in their current positions after each attack in order to form a dominating set on the graph and at each step can be moved after each attack. The “all guards move model” is called the m -eternal domination model. The size of the smallest m -eternal dominating set is called the m -eternal domination number and is denoted by γ m ∞ G . In this paper, we find γ m ∞ P n , 1 and γ m ∞ P n , 3 for n ≡ 0   mod   4 . We also find upper bounds for γ m ∞ P n , 2 and γ m ∞ P n , 3 when n is arbitrary.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ramy Shaheen ◽  
Mohammad Assaad ◽  
Ali Kassem

An eternal dominating set of a graph G is a set of guards distributed on the vertices of a dominating set so that each vertex can be occupied by one guard only. These guards can defend any infinite series of attacks, an attack is defended by moving one guard along an edge from its position to the attacked vertex. We consider the “all guards move” of the eternal dominating set problem, in which one guard has to move to the attacked vertex, and all the remaining guards are allowed to move to an adjacent vertex or stay in their current positions after each attack in order to form a dominating set on the graph and at each step can be moved after each attack. The “all guards move model” is called the m -eternal domination model. The size of the smallest m -eternal dominating set is called the m -eternal domination number and is denoted by γ m ∞ G . In this paper, we find the domination number of Jahangir graph J s , m for s ≡ 1 , 2   mod   3 , and the m -eternal domination numbers of J s , m for s , m are arbitraries.


2007 ◽  
Vol 57 (5) ◽  
Author(s):  
Vladimir Samodivkin

AbstractThe k-restricted domination number of a graph G is the minimum number d k such that for any subset U of k vertices of G, there is a dominating set in G including U and having at most d k vertices. Some new upper bounds in terms of order and degrees for this number are found.


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


10.37236/5711 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Stéphane Bessy ◽  
Pascal Ochem ◽  
Dieter Rautenbach

As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduced exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this power emanating from the dominating vertices. More precisely, if $S$ is a set of vertices of a graph $G$, then $S$ is an exponential dominating set of $G$ if $\sum\limits_{v\in S}\left(\frac{1}{2}\right)^{{\rm dist}_{(G,S)}(u,v)-1}\geq 1$ for every vertex $u$ in $V(G)\setminus S$, where ${\rm dist}_{(G,S)}(u,v)$ is the distance between $u\in V(G)\setminus S$ and $v\in S$ in the graph $G-(S\setminus \{ v\})$. The exponential domination number $\gamma_e(G)$ of $G$ is the minimum order of an exponential dominating set of $G$.In the present paper we study exponential domination in subcubic graphs. Our results are as follows: If $G$ is a connected subcubic graph of order $n(G)$, then $$\frac{n(G)}{6\log_2(n(G)+2)+4}\leq \gamma_e(G)\leq \frac{1}{3}(n(G)+2).$$ For every $\epsilon>0$, there is some $g$ such that $\gamma_e(G)\leq \epsilon n(G)$ for every cubic graph $G$ of girth at least $g$. For every $0<\alpha<\frac{2}{3\ln(2)}$, there are infinitely many cubic graphs $G$ with $\gamma_e(G)\leq \frac{3n(G)}{\ln(n(G))^{\alpha}}$. If $T$ is a subcubic tree, then $\gamma_e(T)\geq \frac{1}{6}(n(T)+2).$ For a given subcubic tree, $\gamma_e(T)$ can be determined in polynomial time. The minimum exponential dominating set problem is APX-hard for subcubic graphs.


2016 ◽  
Vol 13 (10) ◽  
pp. 6514-6518
Author(s):  
Minhong Sun ◽  
Zehui Shao

A (total) double dominating set in a graph G is a subset S ⊆ V(G) such that each vertex in V(G) is (total) dominated by at least 2 vertices in S. The (total) double domination number of G is the minimum size of a (total) double dominating set of G. We determine the total double domination numbers and give upper bounds for double domination numbers of generalized Petersen graphs. By applying an integer programming model for double domination numbers of a graph, we have determined some exact values of double domination numbers of these generalized Petersen graphs with small parameters. The result shows that the given upper bounds match these exact values.


2019 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Lian Chen ◽  
Xiujun Zhang

A graph could be understood as a sensor network, in which the vertices represent the sensors and two vertices are adjacent if and only if the corresponding devices can communicate with each other. For a network G, a 2-dominating function on G is a function f : V(G) &rarr; [0, 1] such that each vertex assigned with 0 has at least two neighbors assigned with 1. The weight of f is &Sigma;_u&isin;V(G) f (u), and the minimum weight over all 2-dominating functions is the 2-domination number of G. The 2-dominating set problem consists of finding the 2-domination number of a graph and it was proposed to model the fault tolerance of a sensor network. In this paper, we determined substantial 2-domination numbers of 2-dimensional meshes, cylinders, tori and hypercubes.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 842 ◽  
Author(s):  
S. Banu Priya ◽  
A. Parthiban ◽  
N. Srinivasan

Let  be a simple graph with vertex set  and edge set . A set  is called a power dominating set (PDS), if every vertex   is observed by some vertices in  by using the following rules: (i) if a vertex  in  is in PDS, then it dominates itself and all the adjacent vertices of  and (ii) if an observed vertex  in   has  adjacent vertices and if   of these vertices are already observed, then the remaining one non-observed vertex is also observed by  in . A power dominating set    in   is said to be an equitable power dominating set (EPDS), if for every  there exists an adjacent vertex   such that the difference between the degree of  and degree of  is less than or equal to 1, i.e., . The minimum cardinality of an equitable power dominating set of  is called the equitable power domination number of  and denoted by . The Mycielskian of a graph  is the graph  with vertex set  where , and edge set  In this paper we investigate the equitable power domination number of Mycielskian of certain graphs. 


2020 ◽  
Vol 12 (06) ◽  
pp. 2050076 ◽  
Author(s):  
Manal N. Al-Harere ◽  
Ahmed A. Omran ◽  
Athraa T. Breesam

In this paper, a new definition of graph domination called “Captive Domination” is introduced. The proper subset of the vertices of a graph [Formula: see text] is a captive dominating set if it is a total dominating set and each vertex in this set dominates at least one vertex which doesn’t belong to the dominating set. The inverse captive domination is also introduced. The lower and upper bounds for the number of edges of the graph are presented by using the captive domination number. Moreover, the lower and upper bounds for the captive domination number are found by using the number of vertices. The condition when the total domination and captive domination number are equal to two is discussed and obtained results. The captive domination in complement graphs is discussed. Finally, the captive dominating set of paths and cycles are determined.


10.37236/8345 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nader Jafari Rad

A subset $S$ of vertices of a graph $G$ is a dominating set of $G$ if every vertex in $V(G)-S$ has a neighbor in $S$. The domination number $\gamma(G)$ of $G$ is the minimum cardinality of a dominating set of $G$. In this paper, we obtain new (probabilistic) upper bounds for the domination number of a graph, and improve previous bounds given by Arnautov (1974), Payan (1975), and Caro and Roditty (1985) for any graph, and Harant, Pruchnewski and Voigt (1999) for regular graphs.


10.37236/6026 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Sándor Bozóki ◽  
Péter Gál ◽  
István Marosi ◽  
William D. Weakley

The queens graph $Q_{m \times n}$ has the squares of the $m \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal of the board. A set $D$ of squares of $Q_{m \times n}$ is a dominating set for $Q_{m \times n}$ if every square of $Q_{m \times n}$ is either in $D$ or adjacent to a square in $D$. The minimum size of a dominating set of $Q_{m \times n}$ is the domination number, denoted by $\gamma(Q_{m \times n})$. Values of $\gamma(Q_{m \times n}), \, 4 \leq m \leq n \leq 18,\,$ are given here, in each case with a file of minimum dominating sets (often all of them, up to symmetry) in an online appendix. In these ranges for $m$ and $n$, monotonicity fails once: $\gamma(Q_{8\times 11}) = 6 > 5 = \gamma(Q_{9 \times 11}) = \gamma(Q_{10 \times 11}) = \gamma(Q_{11 \times 11})$. Let $g(m)$ [respectively $g^{*}(m)$] be the largest integer such that $m$ queens suffice to dominate the $(m+1) \times g(m)$ board [respectively, to dominate the $(m+1) \times g^{*}(m)$ board with no two queens in a row]. Starting from the elementary bound $g(m) \leq 3m$, domination when the board is far from square is investigated. It is shown (Theorem 2) that $g(m) = 3m$ can only occur when $m \equiv 0, 1, 2, 3, \mbox{or } 4 \mbox{ (mod 9)}$, with an online appendix showing that this does occur for $m \leq 40, m \neq 3$. Also (Theorem 4), if $m \equiv 5, 6, \mbox{or } 7 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-2$, and if $m \equiv 8 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-4$. It is shown that equality holds in these bounds for $m \leq 40 $. Lower bounds on $\gamma(Q_{m \times n})$ are given. In particular, if $m \leq n$ then $\gamma(Q_{m \times n}) \geq \min \{ m,\lceil (m+n-2)/4 \rceil \}$. Two types of dominating sets (orthodox covers and centrally strong sets) are developed; each type is shown to give good upper bounds of $\gamma(Q_{m \times n})$ in several cases. Three questions are posed: whether monotonicity of $\gamma(Q_{m \times n})$ holds (other than from $(m, n) = (8, 11)$ to $(9, 11)$), whether $\gamma(Q_{m \times n}) = (m+n-2)/4$ occurs with $m \leq n < 3m+2$ (other than for $(m, n) = (3, 3)$ and $(11, 11)$), and whether the lower bound given above can be improved. A set of squares is independent if no two of its squares are adjacent. The minimum size of an independent dominating set of $Q_{m \times n}$ is the independent domination number, denoted by $i(Q_{m \times n})$. Values of $i(Q_{m \times n}), \, 4 \leq m \leq n \leq 18, \,$ are given here, in each case with some minimum dominating sets. In these ranges for $m$ and $n$, monotonicity fails twice: $i(Q_{8\times 11}) = 6 > 5 = i(Q_{9 \times 11}) = i(Q_{10 \times 11}) = i(Q_{11 \times 11})$, and $i(Q_{11 \times 18}) = 9 > 8 = i(Q_{12\times 18})$.


Sign in / Sign up

Export Citation Format

Share Document