scholarly journals Performance Assessment of Shockwaves of Chute Spillways in Large Dams

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
S. M. Mousavimehr ◽  
Omid Aminoroayaie Yamini ◽  
M. R. Kavianpour

Spillways are the most important structures of large dams that are responsible for releasing the excessive flood discharge from the reservoir. Although many studies have been performed to determine the flow characteristics over these structures, however, the available information on the shockwaves’ characteristics for spillways’ design is limited. The supercritical flow below the chute piers generates an aerated flow known as shockwaves. Due to the flow interaction with the chute piers, three kinds of standing waves just downstream of the pier, in the middle of the chute, and on the sidewalls are generated. This phenomenon affects the flow domain and its hydraulic characteristics along the chute spillway. The height of the waves increases downstream, where they hit the chute walls and reflect again into the flow to interact together again. The process repeated and intensified downstream in a lozenge shape. The height of these waves can be more than twice the depth flow and thus run over the sidewalls. This is important for the design of chute walls in chute spillways with control gates. In this study, the experimental formation of the shockwaves and their behavior along the chute and their reduction measures are presented. Experiments were conducted on a scaled physical model (1/50) of Kheirabad Dam, Water Research Institute, Iran. It was realized that apart from the geometry of piers and chute spillway, Froude number of flow and gate opening are the main effective parameters on the hydraulic performance of shockwaves’ formation and their development on gated spillways.

2015 ◽  
Vol 773-774 ◽  
pp. 358-362 ◽  
Author(s):  
Mohd Azlan Ismail ◽  
Al Khalid Othman ◽  
Hushairi Zen

The initial capital cost for most microhydro projects has always been an overriding issue for self-funded remote communities. The cost will escalate significantly in the absence of local microhydro electromechanical manufacturers. The application of end suction centrifugal pump as turbine will reduce the overall cost, which renders microhydro systems feasible for self-funded projects and are therefore suitable for rural communities. The goal of this study is to design and develop a pump as turbine (PAT) which serves as a substitute to commercial electromechanical components. Numerical analysis of an inverse flow for an end suction centrifugal pump is presented in this paper, which includes the performance curves and hydraulic characteristics of the pump. ANSYS CFX, a commercial CFD software is used to simulate the performance of the pump with specific speed, Ns of 70 units (Euroflo EU50-20). The computational flow domain inside the pump is comprises of impeller, volute and draft tube. Unstructured tetrahedral mesh is used to maintain good surface mesh due to complex flow domain geometries. The governing equations used in the simulations are three-dimensional, incompressible Navier-Stokes and k-ϵ turbulence model under steady-state condition. The simulation results are compared with pump performance curve supplied by the pump manufacturer. The verification results show good agreement for flow rates between 0.7 and 1.3 QBEP. The best efficient point (BEP) for inverse flow is attained at a higher head and flow rate compared to pump mode, whereby the value is found to be 21.55 m and 14.0 l/s, respectively. It is believed that the findings of this study will be useful to predict hydraulic characteristics and performance curves of PAT and the model may be used to identify poor flow characteristics inside the pump. It is recommended that optimization process is carried out using CFD tools in future studies.


Author(s):  
Hideo Ide ◽  
Eiji Kinoshita ◽  
Ryo Kuroshima ◽  
Takeshi Ohtaka ◽  
Yuichi Shibata ◽  
...  

Gas-liquid two-phase flows in minichannels and microchannels display a unique flow pattern called ring film flow, in which stable waves of relatively large amplitudes appear at seemingly regular intervals and propagate in the flow direction. In the present work, the velocity characteristics of gas slugs, ring films, and their features such as the gas slug length, flow phenomena and frictional pressure drop for nitrogen-distilled water and nitrogen-30 wt% ethanol water solution have been investigated experimentally. Four kinds of circular microchannels with diameters of 100 μm, 150 μm, 250 μm and 518 μm were used. The effects of tube diameter and physical properties, especially the surface tension and liquid viscosity, on the flow patterns, gas slug length and the two-phase frictional pressure drop have been investigated by using a high speed camera at 6,000 frames per second. The flow characteristics of gas slugs, liquid slugs and the waves of ring film are presented in this paper.


2001 ◽  
Vol 124 (1) ◽  
pp. 263-272 ◽  
Author(s):  
K. Boomsma ◽  
D. Poulikakos

Open-cell aluminum foams were investigated using water to determine their hydraulic characteristics. Maximum fluid flow velocities achieved were 1.042 m/s. The permeability and form coefficient varied from 2.46×10−10 m2 and 8701 m−1 to 3529×10−10 m2 and 120 m−1, respectively. It was determined that the flowrate range influenced these calculated parameters, especially in the transitional regime where the permeability based Reynolds number varied between unity and 26.5. Beyond the transition regime where ReK≳30, the permeability and form coefficient monotonically approached values which were reported as being calculated at the maximum flow velocities attained. The results obtained in this study are relevant to engineering applications employing metal foams ranging from convection heat sinks to filters and flow straightening devices.


2013 ◽  
Vol 51 (6) ◽  
pp. 735-736
Author(s):  
Robert M. Boes ◽  
Jill Lucas ◽  
Willi H. Hager

2012 ◽  
Vol 50 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Masayuki Takahashi ◽  
Iwao Ohtsu

2012 ◽  
Vol 256-259 ◽  
pp. 2519-2522 ◽  
Author(s):  
Zhi Yong Dong ◽  
Qi Qi Chen ◽  
Yong Gang Yang ◽  
Bin Shi

Hydraulic characteristics of orifice plates with multiple triangular holes in hydrodynamic cavitation reactor were experimentally investigated by use of three dimensional particle image velocimetry (PIV), high speed photography, electronic multi-pressure scanivalve and pressure data acquisition system, and numerically simulated by CFD software Flow 3D in this paper. Effects of number, arrangement and ratio of holes on hydraulic characteristics of the orifice plates were considered. Effects of arrangement and ratio of holes and flow velocity ahead of plate on cavitation number and velocity profile were compared. Distribution of turbulent kinetic energy and similarity of velocity profile were analyzed. And characteristics of cavitating flow downstream of the orifice plate were photographically observed by high speed camera. Also, a comparison with flow characteristics of orifice plate with hybrid holes (circle, square and triangle) was made.


2008 ◽  
Vol 52 ◽  
pp. 787-792
Author(s):  
Masayuki TAKAHASHI ◽  
Youichi YASUDA ◽  
Iwao OHTSU

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Chen Wang ◽  
Lujie Zhou ◽  
Yujing Jiang ◽  
Xuepeng Zhang ◽  
Jiankang Liu

An appropriate understanding of the hydraulic characteristics of the two-phase flow in the rock fracture network is important in many engineering applications. To investigate the two-phase flow in the fracture network, a study on the two-phase flow characteristics in the intersecting fractures is necessary. In order to describe the two-phase flow in the intersecting fractures quantitatively, in this study, a gas-water two-phase flow experiment was conducted in a smooth 3D model with intersecting fractures. The results in this specific 3D model show that the flow structures in the intersecting fractures were similar to those of the stratified wavy flow in pipes. The nonlinearity induced by inertial force and turbulence in the intersecting fractures cannot be neglected in the two-phase flow, and the Martinelli-Lockhart model is effective for the two-phase flow in intersecting fractures. Delhaye’s model can be adapted for the cases in this experiment. The turbulence of the flow can be indicated by the values of C in Delhaye’s model, but resetting the appropriate range of the values of C is necessary.


1968 ◽  
Vol 1 (11) ◽  
pp. 39 ◽  
Author(s):  
Taizo Hayashi ◽  
Masataro Hattori ◽  
Masujiro Shirai

The theory for the transmission and reflection of the waves at the closely spaced pile breakwater has been developed by the use of shallow water wave theory of small amplitude. Experiment on the hydraulic characteristics of the breakwater has been performed in a two dimensional wave flume. The agreement between the theory and the experiment is pretty good with respect to the coefficients of transmission and reflection of waves, and also to the shoreward velocity of the jet discharged from a space between any two adjacent piles. Experiment was also made on the local scouring at the foot of the clocely spaced pile breakwater. The maximrai scouring depth at the foot of the breakwater relates closely to the ratio of the velocity of the jet to the mean fall velocity of bed material. The relation between the maximum scouring depth and the power of the jet is discussed.


Sign in / Sign up

Export Citation Format

Share Document