scholarly journals Newton-PGSS and Its Improvement Method for Solving Nonlinear Systems with Saddle Point Jacobian Matrices

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yao Xiao ◽  
Qingbiao Wu ◽  
Yuanyuan Zhang

The preconditioned generalized shift-splitting (PGSS) iteration method is unconditionally convergent for solving saddle point problems with nonsymmetric coefficient matrices. By making use of the PGSS iteration as the inner solver for the Newton method, we establish a class of Newton-PGSS method for solving large sparse nonlinear system with nonsymmetric Jacobian matrices about saddle point problems. For the new presented method, we give the local convergence analysis and semilocal convergence analysis under Hölder condition, which is weaker than Lipschitz condition. In order to further raise the efficiency of the algorithm, we improve the method to obtain the modified Newton-PGSS and prove its local convergence. Furthermore, we compare our new methods with the Newton-RHSS method, which is a considerable method for solving large sparse nonlinear system with saddle point nonsymmetric Jacobian matrix, and the numerical results show the efficiency of our new method.

2016 ◽  
Vol 09 (02) ◽  
pp. 1650034
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for some families of fourth and sixth-order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies [V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing 45 (1990) 355–367; C. Chun, P. Stanica and B. Neta, Third order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011) 1665–1675; J. M. Gutiérrez and M. A. Hernández, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998) 1–8; M. A. Hernández and M. A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math. 126 (2000) 131–143; M. A. Hernández, Chebyshev’s approximation algorithms and applications, Comput. Math. Appl. 41 (2001) 433–455; M. A. Hernández, Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory Appl. 104(3) (2000) 501–515; J. L. Hueso, E. Martinez and C. Teruel, Convergence, efficiency and dynamics of new fourth and sixth-order families of iterative methods for nonlinear systems, J. Comput. Appl. Math. 275 (2015) 412–420; Á. A. Magre nán, Estudio de la dinámica del método de Newton amortiguado, Ph.D. thesis, Servicio de Publicaciones, Universidad de La Rioja (2013), http://dialnet.unirioja.es/servlet/tesis?codigo=38821 ; J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970); M. S. Petkovic, B. Neta, L. Petkovic and J. Džunič, Multi-Point Methods for Solving Nonlinear Equations (Elsevier, 2013); J. F. Traub, Iterative Methods for the Solution of Equations, Automatic Computation (Prentice-Hall, Englewood Cliffs, NJ, 1964); X. Wang and J. Kou, Semilocal convergence and [Formula: see text]-order for modified Chebyshev–Halley methods, Numer. Algorithms 64(1) (2013) 105–126] have used hypotheses on the fourth Fréchet derivative of the operator involved. We use hypotheses only on the first Fréchet derivative in our local convergence analysis. This way, the applicability of these methods is extended. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples illustrating the theoretical results are also presented in this study.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


Sign in / Sign up

Export Citation Format

Share Document