scholarly journals Vibration Suppression for Beam-Like Repeating Lattice Structure Based on Equivalent Model by a Nonlinear Energy Sink

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Gen Liu ◽  
Gongfa Chen ◽  
Fangsen Cui

Based on the fully deployed space beam-like truss, the vibration reduction of the lattice structure is studied by using the local NES (nonlinear energy sink) attachment in this paper. The beam-like lattice structure is modeled as an equivalent linear continuous system (a finite length beam) by the equivalent method and validated with the finite element results. The dynamic vibration equations for the equivalent cantilever beam are established and the governing equations for the equivalent beam with NES are approximated by the Galerkin method. The displacement responses of the beam with and without NES attached under shock excitation are obtained. With NES at different positions, the amplitude responses of the coupled system under the external excitation at different positions are calculated to evaluate the suppression effect of the NES attachment to the structure. And with different masses of the NES, the amplitude responses of the coupled structure subject to the external excitation at different positions are also investigated to get the influence of the mass of the NES attachment to the vibration reduction. It can be seen from the results that the NES attachment can attenuate the response of the beam-like truss under transient excitation efficiently. And with the mass of NES attachment increasing, the vibration amplitude of the coupled system declines more rapidly, and the energy consumption efficiency of the NES attachment is higher. Moreover, the attenuation effect of the NES with different masses is experimentally analyzed. The experimental results are in good accord with the theoretical calculation.

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Kai Yang ◽  
Ye-Wei Zhang ◽  
Hu Ding ◽  
Tian-Zhi Yang ◽  
Yang Li ◽  
...  

A nonlinear energy sink (NES) approach is proposed for whole-spacecraft vibration reduction. Frequency sweeping tests are conducted on a scaled whole-spacecraft structure without or with a NES attached. The experimental transmissibility results demonstrate the significant reduction of the whole-spacecraft structure vibration over a broad spectrum of excitation frequency. The NES attachment hardly changes the natural frequencies of the structure. A finite element model is developed, and the model is verified by the experimental results. A two degrees-of-freedom (DOF) equivalent model of the scaled whole-spacecraft is proposed with the two same natural frequencies as those obtained via the finite element model. The experiment, the finite element model, and the equivalent model predict the same trends that the NES vibration reduction performance becomes better for the increasing NES mass, the increasing NES viscous damping, and the decreasing nonlinear stiffness. The energy absorption measure and the energy transition measure calculated based on the equivalent model reveals that an appropriately designed NES can efficiently absorb and dissipate broadband-frequency energy via nonlinear beats, irreversible targeted energy transfer (TET), or both for different parameters.


Author(s):  
Dongyang Chen ◽  
Qing Xiao ◽  
Lei Ma ◽  
Weijun Zhu ◽  
Laith K. Abbas ◽  
...  

Abstract The fully turbulent vortex induced vibration (VIV) suppression of a circular cylinder through a nonlinear energy sink (NES) having linear damping and nonlinear cubic stiffness is investigated numerically. The computational fluid dynamics (CFD) method is carried out to calculate the fluid field, while a fourth-order Runge-Kutta method is used to calculating the nonlinear structure dynamics of flow-cylinder-NES coupled system. The fluid-structure interaction (FSI) model is validated against VIV experimental data for a cylinder in a uniform flow. The simulation results show that placing an NES structure with suitable parameters inside of the cylinder structure achieves a good VIV amplitudes’ suppression effect and narrows the “lock-in” region.


2013 ◽  
Vol 325-326 ◽  
pp. 214-217
Author(s):  
Yong Chen ◽  
Yi Xu

Using nonlinear energy sink absorber (NESA) is a good countermeasure for vibration suppression in wide board frequency region. The nonlinear normal modes (NNMs) are helpful in dynamics analysis for a NESA-attached system. Being a primary structure, a cantilever beam whose modal functions contain hyperbolic functions is surveyed, in case of being attached with NESA and subjected to a harmonic excitation. With the help of Galerkins method and Raushers method, the NNMs are obtained analytically. The comparison of analytical and numerical results indicates a good agreement, which confirms the existence of the nonlinear normal modes.


Author(s):  
Youzuo Jin ◽  
Kefu Liu ◽  
Deli Li ◽  
Liuyang Xiong ◽  
Lihua Tang

Abstract In this paper, a non-traditional variant nonlinear energy sink (NES) is developed for simultaneous vibration suppression and energy harvesting in a broad frequency band. The non-traditional variant NES consists of a cantilever beam attached by a pair of magnets at its free end, a pair of the so-called continuous-contact blocks, and a pair of coils. The beam is placed between the continuous-contact blocks. The constraint of the continuous-contact blocks forces the beam to deflect nonlinearly. Each of the magnet-coil pairs forms an electromagnetic energy harvester. Different from a traditional way that attaches the coils to the primary mass, the developed setup has the coils fixed to the base. First, the developed apparatus is described. Subsequently, the system modeling and parameter identification are addressed. The performance of the apparatus under transient responses is examined by using computer simulation. The results show that the proposed apparatus behaves similarly as the NES with the following features: 1:1 resonance, targeted energy transfer, initial energy dependence, etc.


Author(s):  
Ravi Kumar R. Tumkur ◽  
Ramon Calderer ◽  
Arif Masud ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis ◽  
...  

We study the nonlinear fluid-structure interaction of an elastically supported rigid circular cylinder in a laminar flow. Periodic shedding of counter-rotating vortices from either side of the cylinder results in vortex-induced vibration of the cylinder. We demonstrate the passive suppression of the limit cycle oscillation (LCO) of the cylinder with the use of an essentially nonlinear element, the nonlinear energy sink (NES). The computational study is performed at a Reynolds number (Re) of 100; Re is defined based on the cylinder diameter and inlet velocity. The variational multiscale residual-based stabilized finite-element method is used to compute approximate solutions of the incompressible Navier-Stokes equations. The NES is comprised of a small mass, an essentially nonlinear spring, and a linear damper. With appropriate values for the NES parameters, the coupled system of flow-cylinder-NES exhibits resonant interactions, resulting in targeted energy transfer (TET) from the flow via the cylinder to the NES, where the energy is dissipated by the linear damper. The NES interacts with the fluid via the cylinder by altering the phase relation between the lift force and the cylinder displacement; this brings about significant reduction in the LCO amplitude of the cylinder for several set of values of the NES parameters.


2020 ◽  
Vol 56 (15) ◽  
pp. 191
Author(s):  
YAO Hongliang ◽  
CAO Yanbo ◽  
ZHANG Qin ◽  
WEN Bangchun

2018 ◽  
Vol 193 ◽  
pp. 180-188 ◽  
Author(s):  
Jianen Chen ◽  
Wei Zhang ◽  
Minghui Yao ◽  
Jun Liu ◽  
Min Sun

Sign in / Sign up

Export Citation Format

Share Document