scholarly journals Nuclear and Detector Sensitivities for Neutrinoless Double Beta-Decay Experiments

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hiroyasu Ejiri

Neutrinoless double beta-decay (DBD) is of current interest in high-sensitivity frontiers of particle physics. The decay is very sensitive to Majorana neutrino masses, neutrino CP phases, right-handed weak interactions, and others, which are beyond the standard electroweak model. DBDs are actually ultrarare events, and thus, DBD experiments with ultrahigh sensitivity are required. Critical discussions are presented on nuclear and detector sensitivities for high-sensitivity DBD experiments to study the neutrino masses in the normal and inverted mass hierarchies.

2012 ◽  
Vol 2012 ◽  
pp. 1-38 ◽  
Author(s):  
Andrea Giuliani ◽  
Alfredo Poves

This paper introduces the neutrinoless double-beta decay (the rarest nuclear weak process) and describes the status of the research for this transition, both from the point of view of theoretical nuclear physics and in terms of the present and future experimental scenarios. Implications of this phenomenon on crucial aspects of particle physics are briefly discussed. The calculations of the nuclear matrix elements in case of mass mechanisms are reviewed, and a range for these quantities is proposed for the most appealing candidates. After introducing general experimental concepts—such as the choice of the best candidates, the different proposed technological approaches, and the sensitivity—we make the point on the experimental situation. Searches running or in preparation are described, providing an organic presentation which picks up similarities and differences. A critical comparison of the adopted technologies and of their physics reach (in terms of sensitivity to the effective Majorana neutrino mass) is performed. As a conclusion, we try to envisage what we expect round the corner and at a longer time scale.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 29
Author(s):  
Harald Fritzsch

We discuss the mass matrices with texture zeros for the quarks and leptons. The flavor mixing angles for the quarks are functions of the quark masses and can be calculated. The results agree with the experimental data. The texture zero mass matrices for the leptons and the see-saw mechanism are used to derive relations between the matrix elements of the lepton mixing matrix and the ratios of the neutrino masses. Using the measured neutrino mass differences, the neutrino masses can be calculated. The neutrinoless double beta decay is discussed. The effective Majorana neutrino mass, describing the neutrinoless double beta decay, can be calculated—it is about 4.6 meV. The present experimental limit is at least twenty times larger.


2012 ◽  
Vol 27 (13) ◽  
pp. 1230015 ◽  
Author(s):  
S. M. BILENKY ◽  
C. GIUNTI

In this brief review we discuss the generation of Majorana neutrino masses through the seesaw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of ϑ13, and the interpretation of the results of neutrinoless double-beta decay experiments.


2016 ◽  
Vol 2016 ◽  
pp. 1-37 ◽  
Author(s):  
Stefano Dell’Oro ◽  
Simone Marcocci ◽  
Matteo Viel ◽  
Francesco Vissani

The discovery of neutrino masses through the observation of oscillations boosted the importance of neutrinoless double beta decay (0νββ). In this paper, we review the main features of this process, underlining its key role from both the experimental and theoretical point of view. In particular, we contextualize the0νββin the panorama of lepton number violating processes, also assessing some possible particle physics mechanisms mediating the process. Since the0νββexistence is correlated with neutrino masses, we also review the state of the art of the theoretical understanding of neutrino masses. In the final part, the status of current0νββexperiments is presented and the prospects for the future hunt for0νββare discussed. Also, experimental data coming from cosmological surveys are considered and their impact on0νββexpectations is examined.


Sign in / Sign up

Export Citation Format

Share Document