scholarly journals Influence of Wheel Profile Wear Coupled with Wheel Diameter Difference on the Dynamic Performance of Subway Vehicles

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
H. X. Li ◽  
A. H. Zhu ◽  
C. C. Ma ◽  
P. W. Sun ◽  
J. W. Yang ◽  
...  

In view of the coexistence of wheel profile wear (WPW) and wheel diameter difference (WDD) on an actual subway line, a dynamic analysis method based on coupling between WPW and equivalent in-phase WDD was proposed. Based on the measurements from a subway vehicle in operation on this line, dynamics modeling and calculations were performed for a single carriage of this vehicle. Later, the interaction between the effects of WPW and equivalent in-phase WDD on the vehicle dynamic performance was analyzed, and the dynamic response in the presence of coupled damage was compared between the outer and inner wheels. Furthermore, the difference in the dynamic response caused by different positions of the larger-diameter wheels (i.e., on the inner track or outer track) was analyzed for the case where equivalent in-phase WDD occurred between the front and rear bogies. The results show that when the vehicle ran on a straight line, the coupling between WPW and WDD reduced the vehicle’s stability but improved its ride comfort. When the vehicle traveled on a curved line, it showed reductions in the lateral wheel/rail contact force, derailment coefficient, axle lateral force, and wear index if the outer wheels had a larger diameter. As a result, the deterioration of the vehicle’s dynamic performance due to the increasing degree of WPW slowed down, and its curve negotiation performance improved. Meanwhile, the outer wheels had significantly greater lateral wheel/rail contact force, derailment coefficient, and wear index compared to the inner wheels. When a −1 mm WDD was coupled with the worn wheel profile for 14 × 104 kilometers traveled, the dynamic performance indexes of the vehicle were close to or even exceeded the corresponding safety limits. The findings can provide technical support for subway vehicle maintenance.

Author(s):  
Aihua Zhu ◽  
Hongxiao Li ◽  
Jianwei Yang ◽  
Qiang Li ◽  
Si Yang ◽  
...  

Out-of-roundness and tread wear are common types of damage to subway wheels, which greatly affect the dynamic performance of subway vehicles. In light of the coupling and asymmetry of out-of-roundness and tread wear found in real-world subway wheels, an analysis method that considers asymmetric out-of-roundness coupled with tread wear was proposed for vehicle dynamics. A vehicle dynamics model featuring asymmetric out-of-roundness coupled with tread wear was used to investigate the influences of asymmetric wheel damage and coupled damage on the dynamic performance of the vehicle system. The vehicle’s dynamic performance was simulated under different conditions, including asymmetric out-of-roundness and symmetric out-of-roundness, uncoupled damage and coupled damage, asymmetric coupled damage and symmetric coupled damage. Then the estimated data was compared against the measured data. The study finds that the vertical wheel/rail contact force, lateral wheel/rail contact force, derailment coefficient and wheel unloading rate increased in the case of asymmetric out-of-roundness. In the presence of coupled damage, the degree of tread wear had a relatively great influence on the lateral wheel/rail contact force, axle lateral force, and derailment coefficient, but had little influence on the vertical contact force. Compared to symmetric coupled damage, asymmetric coupled damage had a greater influence on peak vertical vibration acceleration and stability index, and their values are closer to the measured values in the case of asymmetric coupled damage. This suggests that the dynamics model that considers asymmetric out-of-roundness coupled with tread wear can provide more accurate results as guidance on the maintenance and overhaul of subway wheels.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Le Zhang ◽  
Tian Li ◽  
Jiye Zhang ◽  
Ronghuan Piao

AbstractUnder the influence of crosswinds, the running safety of trains will decrease sharply, so it is necessary to optimize the suspension parameters of trains. This paper studies the dynamic performance of high-speed trains under crosswind conditions, and optimizes the running safety of train. A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train. A series of dynamic models of a train, with different dynamic parameters were constructed, and analyzed, with safety metrics for these being determined. Finally, a surrogate model was built and an optimization algorithm was used upon this surrogate model, to find the minimum possible values for: derailment coefficient, vertical wheel-rail contact force, wheel load reduction ratio, wheel lateral force and overturning coefficient. There were 9 design variables, all associated with the dynamic parameters of the bogie. When the train was running with the speed of 350 km/h, under a crosswind speed of 15 m/s, the benchmark dynamic model performed poorly. The derailment coefficient was 1.31. The vertical wheel-rail contact force was 133.30 kN. The wheel load reduction rate was 0.643. The wheel lateral force was 85.67 kN, and the overturning coefficient was 0.425. After optimization, under the same running conditions, the metrics of the train were 0.268, 100.44 kN, 0.474, 34.36 kN, and 0.421, respectively. This paper show that by combining train aerodynamics, vehicle system dynamics and many-objective optimization theory, a train’s stability can be more comprehensively analyzed, with more safety metrics being considered.


2019 ◽  
Vol 254 ◽  
pp. 02041
Author(s):  
Lukáš Smetanka ◽  
Slavomír Hrček ◽  
Pavol Šťastniak

The wear of rails and wheels is important problem in rail traffic. The change of the shape of the wheel profile has not only a great influence on the dynamic properties of the vehicle (like stability, safety by passing curved tracks, etc.), but also affects the ride comfort of passengers and environmental insults, in extreme cases it can cause rail derailment. One of the ways to predict these undesired conditions are computer aided simulation analyses. In this article are presented results of wheel profile wear by Archard wear law, when the vehicle of type Model A was driving in track by constant velocity of 30 m/s. The vehicle was traveling along track where the rail profile was defined by standard (UIC 60 profile) with cant of 1:40, or the track profile really measured on the track, the profile S 91700_16 with the cant of 1:20. Simulations were realized by SIMPACK software.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
He Ma ◽  
Jinming Zhang ◽  
Jun Zhang ◽  
Tao Tao Jin ◽  
Chun Yu Song

Wheel wear is unavoidable, which affects the contact performance of the wheel and rail. This article explores the effects of wheel profile wear on the static contact and dynamic interaction between wheel and standard fixed frog in heavy haul railway. The coupling dynamic models of the vehicle-fixed frog system are established to calculate the change regulation of displacement, contact force, and acceleration when a vehicle passes through the standard fixed frog at a speed of 50 km/h in the facing move in the diverging line. Besides, the finite element models of wheel and standard fixed frog at key positions are developed to simulate the contact patch and distribution of von Mises stress in the regions of the wheel-fixed frog. Compared with the standard profile, the maximum lateral displacement of the worn profile can be reduced by up to 9 mm. The vertical contact force can be reduced from 750 kN to 320 kN, and the decrease is 57.3%. The von Mises stress could decrease up to 34% compared with the standard. And the results show that the wheel profile wear changes the positions of the wheel-rail contact points along the longitudinal direction and affects the dynamic interaction of vehicle and standard fixed frog. For the measured worn wheel profiles in this article, profile wear relieves the dynamic responses and it is good for the nose rail.


2013 ◽  
Vol 712-715 ◽  
pp. 1541-1544
Author(s):  
Yi Jia Wang ◽  
Jing Zeng

With the rapid development of high-speed railways, wheel and rail wear has become increasingly serious due to the acute wheel-rail interaction. During the operation of high speed vehicle, complicated wheel-rail contact force will lead to wheel profile wear, which will worsen the dynamic performance of vehicle system, or even influence the safe operation of vehicles. In order to ensure the vehicle dynamic performance, right now regularly wheel re-profiling has to be adopted. Therefore, the study of wheel profile wear and its effect on vehicle dynamic performance is very important [1,. The purpose of the paper is to study the variation characteristics of vehicle dynamic performance with respect to the wheel profile wear through numerical simulation and field test.


2015 ◽  
Vol 744-746 ◽  
pp. 1249-1252 ◽  
Author(s):  
Yong Zeng

Two vehicle-track dynamics models on heavy haul railway are established in two conditions of rigid track and elastic track. And the impact of track elasticity on the wheel-rail dynamics performance was analyzed using models. The results show that the critical speed of heavy vehicles and wheel-rail dynamic indexes, such as wheel-rail lateral force and wheel-rail vertical force decreased on elastic track compared with rigid track. However, other dynamic indexes, including derailment coefficient and lateral displacement of wheelsets increased on elastic track. And the wheel-rail wear indexes are some differences on two tracks.


SIMULATION ◽  
2018 ◽  
Vol 95 (5) ◽  
pp. 441-459 ◽  
Author(s):  
Smitirupa Pradhan ◽  
AK Samantaray ◽  
R Bhattacharyya

This paper presents a complete model to estimate the effects of wheel wear on the dynamic behavior and ride comfort of a railway vehicle. A co-simulation of the vehicle dynamics modeled in ADAMS VI-Rail and wear evolution modeled in MATLAB is performed in a loop. The outputs from the vehicle dynamics simulation are used to compute the wear evolution, which in turn affects the vehicle dynamics. The local contact parameters, such as normal contact force, tangential stresses and slip, etc., and wear distribution for each cell of the contact surface are estimated with the help of Kalker’s simplified theory of rolling contact and Archard’s wear model, respectively. The wear distribution and smoothening of the wheel profile are obtained for a short travel distance and are then scaled up for larger travel distance. The worn wheel profile is updated in the vehicle dynamics model after every 10,000 km of travel for further dynamic analysis and this process is repeated until either the critical dynamic performance or wheel wear limits are reached. Several new results emerge by considering both acceleration and braking on a tangent track with sinusoidal irregularities. Critical speed appears to increase initially and then decrease quickly, whereas worn wheels give better ride comfort in both lateral and vertical directions as compared to new wheels. According to the results in this work, wheels may be recommended for re-profiling or replacement much before the critical wear depth recommended in maintenance guidelines is reached.


2018 ◽  
Vol 157 ◽  
pp. 03017 ◽  
Author(s):  
Lukáš Smetanka ◽  
Pavol Št’astniak ◽  
Jozef Harušinec

The wear of rails and wheels is important problem in rail traffic. The change of the shape of the wheel profile has not only a great influence on the dynamic properties of the vehicle (like stability, safety by passing curved tracks, etc.), but also affects the ride comfort of passengers and environmental insults, in extreme cases it can cause rail derailment. One of the ways to predict these undesired conditions are computer aided simulation analyzes. In this article are presented assessments of wheel profile wear by Archard wear law in Simpack simulation software, when is railway vehicle driving at different velocities.


Author(s):  
Khaled E. Zaazaa ◽  
Brian Whitten

In recent decades, there has been a considerable effort in improving railroad vehicle dynamic performance. This involves high operational speed with stable behavior, better curving performance, better ride quality, and increased life of the wheel and rail profiles. To achieve this goal, the use of independently rotating wheels (IRW) is proposed as one potential option. Using IRW either partially or totally decouples the pitch rotation of the two wheels of the “wheelset”, thereby reducing or eliminating the longitudinal creepage and thus wheelset hunting motion. On the other hand, the longitudinal creepage is no longer available to provide steering assistance in curves, and continuous flange contact during curving is expected. However, by judicious choice of wheel profile and careful truck design, the lateral force between wheel and rail during curving can be reduced, decreasing the wear on both the wheel and rail profiles. Therefore, such solution is assumed to achieve higher stable operational speed and improved curving behavior. In this paper, the effect of using IRW on railroad vehicle performance is examined. The equations of motion of a single wheelset model and a suspended wheelset model that use IRW are presented and compared with those for similar models that use a rigid wheelset. Using a newly developed general multibody code, a complete vehicle model that uses IRW is examined and compared with one that uses rigid wheelsets. The effect of the IRW system on vehicle dynamic performance is quantitatively presented. In addition, the ability of the contact formulations used in this multibody code for modeling the IRW system is confirmed.


Sign in / Sign up

Export Citation Format

Share Document