scholarly journals Plasmon Mediation of Charge Pairing in High Temperature Superconductors

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Abel Mukubwa ◽  
John Wanjala Makokha

A Bose-Einstein condensate (BEC) of a nonzero momentum Cooper pair constitutes a composite boson or simply a boson. We demonstrated that the quantum coherence of the two-component BEC (boson and fermion condensates) is controlled by plasmons. It has been proposed that plasmons, observed in both electron-doped and hole-doped cuprates, originates from the long-range Coulomb screening, where the transfer momentum q ⟶ 0 . We further show that the screening mediates boson-fermion pairing at condensate state. While only about 1 % of plasmon energy mediates the charge pairing, most of the plasmon energy is used to overcome the modes that compete against superconductivity such as phonons, charge density waves, antiferromagnetism, and damping effects. Additionally, the dependence of frequency of plasmons on the material of a superconductor is also explored. This study gives a quantum explanation of the modes that enhance and those that inhibit superconductivity. The study informs the nature of electromagnetic radiations (EMR) that can enhance the critical temperature of such materials.

In this paper, we consider the dynamic evolution of a binary mixture of a Bose-Einstein condensate taking into account the presence of dissipation inside the components. Using the introduction of the dissipative function, the modified Gross-Pitaevskii equations are obtained. These equations, in contrast to the usual Gross-Pitaevskii equations for two-component condensate, allow us to take into account the dissipation in the system. The influence of dissipative processes on the development of modulation instability in a spatially homogeneous two-component Bose-Einstein condensate is investigated. In contrast to the one-component Bose-Einstein condensate, in which modulation instability arises only when there are forces of attraction between atoms, in a two-component Bose-Einstein condensate nonlinear dynamics, leading to modulation instability is more complex. It essentially depends on the signs and values of the constant interaction of the components, which leads to a greater variety of possible scenarios for the development of modulation instability. The paper considers two cases. The first case is when repulsive forces act inside the components, and the second is when repulsive forces act in the first component, and in the second one - attractive forces. At the same time, the situation when there is a repulsion in the first component, and attraction between the particles in the second component differs significantly from the case of only positive interaction inside the components. The relations between the interaction constants that determine the development of the modulation instability turn out to be different. Given the relations between the interaction constants, taking into account dissipation processes, the occurrence of modulation instability in two-component Bose-Einstein condensates was studied, the maximum growth rate of oscillations was found, and the limits of the existence of modulation instability in the space of wave numbers were found. It is shown that the small effect of dissipation on the modulation instability in the Bose – Einstein condensate is explained not only by the smallness of the friction forces. For wave vectors corresponding to a mode with a maximum increment, the contribution of dissipation in the linear approximation with respect to the dissipative parameter is strictly zero. Thus, the condition for the development of the most rapidly growing mode of oscillations, which determines the beginning of the modulation instability, remains the same as in the nondissipative case.


2020 ◽  
Vol 35 (26) ◽  
pp. 2050227 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Vladimir V. Tereshchuk

We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions (ULA) of different mass. The DMH is described as a Bose–Einstein condensate (BEC) in its ground state. In the mean-field (MF) limit, we have derived the integro-differential equations for the spherically symmetrical wave functions of the two DMH components. We studied, numerically, the radial distribution of the mass density of ULA and constructed the parameters which could be used to distinguish between the two- and one-component DMH. We also discuss an interesting connection between the BEC ground state of a one-component DMH and Black Hole temperature and entropy, and Unruh temperature.


Author(s):  
Yunsong Guo ◽  
Yubin Jiao ◽  
Xiaoning Liu ◽  
Xiangbo Zhu ◽  
Ying Wang

In this study, we investigate the evolution of vortex in harmonically trapped two-component coupled Bose–Einstein condensate with quintic-order nonlinearity. We derive the vortex solution of this two-component system based on the coupled quintic-order Gross–Pitaevskii equation model and the variational method. It is found that the evolution of vortex is a metastable state. The radius of vortex soliton shrinks and expands with time, resulting in periodic breathing oscillation, and the angular frequency of the breathing oscillation is twice the value of the harmonic trapping frequency under infinitesimal nonlinear strength. At the same time, it is also found that the higher-order nonlinear term has a quantitative effect rather than a qualitative impact on the oscillation period. With practical experimental setting, we identify the quasi-stable oscillation of the derived vortex evolution mode and illustrated its features graphically. The theoretical results developed in this work can be used to guide the experimental observation of the vortex phenomenon in ultracold coupled atomic systems with quintic-order nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document