scholarly journals Analytical Analysis of Fractional-Order Physical Models via a Caputo-Fabrizio Operator

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fatemah Mofarreh ◽  
A. M. Zidan ◽  
Muhammad Naeem ◽  
Rasool Shah ◽  
Roman Ullah ◽  
...  

This paper investigates a modified analytical method called the Adomian decomposition transform method for solving fractional-order heat equations with the help of the Caputo-Fabrizio operator. The Laplace transform and the Adomian decomposition method are implemented to obtain the result of the given models. The validity of the proposed method is verified by considering some numerical problems. The solution achieved has shown that the better accuracy of the suggested method. Furthermore, due to the straightforward implementation, the proposed method can solve other nonlinear fractional-order problems.

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 837-841 ◽  
Author(s):  
Shuxian Deng

Consider the non-linear local fractional heat equation. The fractional complex transform method and the Adomian decomposition method are used to solve the equation. The approximate analytical solutions are obtained.


2019 ◽  
Vol 10 (1) ◽  
pp. 122 ◽  
Author(s):  
Hassan Khan ◽  
Umar Farooq ◽  
Rasool Shah ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
...  

In this article, a new analytical technique based on an innovative transformation is used to solve (2+time fractional-order) dimensional physical models. The proposed method is the hybrid methodology of Shehu transformation along with Adomian decomposition method. The series form solution is obtained by using the suggested method which provides the desired rate of convergence. Some numerical examples are solved by using the proposed method. The solutions of the targeted problems are represented by graphs which have confirmed closed contact between the exact and obtained solutions of the problems. Based on the novelty and straightforward implementation of the method, it is considered to be one of the best analytical techniques to solve linear and non-linear fractional partial differential equations.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
M. Sambath ◽  
K. Balachandran

AbstractIn this work, a combined form of the Laplace transform method and the Adomian decomposition method is implemented to give an approximate solution of nonlinear systems of differential equations such as fish farm model with three components nutrient, fish and mussel. The technique is described and illustrated with a numerical example.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bin Zhen ◽  
Zigen Song

The synchronization between two coupled FitzHugh-Nagumo (FHN) neurons with or without external current is studied by using the Laplace transform and the Adomian decomposition method. Different from other researches, the synchronization error system is expressed as sets of Volterra integral equations based on the convolution theorem in the Laplace transform. Then, it is easy to analytically obtain the conditions that synchronization errors disappear based on the successive approximation method in integral equation theorem, the correctness of which is verified by numerical simulations. Furthermore, the synchronous dynamics of the two coupled FHN neurons also can be written in the form of Volterra integral equations, which is more convenient to analytically solve by using the Adomian decomposition method. It is found that the occurrence of synchronization between the two FHN neurons only depends on the coupling strength and is irrelevant to the external current. Only synchronous rest state in the two FHN neurons without external current can be achieved, while synchronous spikes appear if the external current is not zero.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


Sign in / Sign up

Export Citation Format

Share Document