scholarly journals G-Expansibility and G-Almost Periodic Point under Topological Group Action

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhanjiang Ji

Firstly, the new concepts of G − expansibility, G − almost periodic point, and G − limit shadowing property were introduced according to the concepts of expansibility, almost periodic point, and limit shadowing property in this paper. Secondly, we studied their dynamical relationship between the self-map f and the shift map σ in the inverse limit space under topological group action. The following new results are obtained. Let X , d be a metric G − space and X f , G ¯ ,   d ¯ , σ be the inverse limit space of X , G , d , f . (1) If the map f : X ⟶ X is an equivalent map, then we have A P G ¯ σ = Lim ← A p G f , f . (2) If the map f : X ⟶ X is an equivalent surjection, then the self-map f is G − expansive if and only if the shift map σ is G ¯ − expansive. (3) If the map f : X ⟶ X is an equivalent surjection, then the self-map f has G − limit shadowing property if and only if the shift map σ has G ¯ − limit shadowing property. The conclusions of this paper generalize the corresponding results given in the study by Li, Niu, and Liang and Li . Most importantly, it provided the theoretical basis and scientific foundation for the application of tracking property in computational mathematics and biological mathematics.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhanjiang Ji

Firstly, we introduce the definitions of G -asymptotic tracking property, G -asymptotic average tracking property, and G -quasi-weak almost-periodic point. Secondly, we study their dynamical properties and characteristics. The results obtained improve the conclusions of asymptotic tracking property, asymptotic average tracking property, and quasi-weak almost-periodic point in the inverse limit space and provide the theoretical basis and scientific foundation for the application of tracking property in computational mathematics, biological mathematics, and computer science.


2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Zhan jiang Ji

According to the definition of sequence shadowing property and regularly recurrent point in the inverse limit space, we introduce the concept of sequence shadowing property and regularly recurrent point in the double inverse limit space and study their dynamical properties. The following results are obtained: (1) Regularly recurrent point sets of the double shift map σ f ∘ σ g are equal to the double inverse limit space of the double self-map f ∘ g in the regularly recurrent point sets. (2) The double self-map f ∘ g has sequence shadowing property if and only if the double shift map σ f ∘ σ g has sequence shadowing property. Thus, the conclusions of sequence shadowing property and regularly recurrent point are generalized to the double inverse limit space.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Ali Barzanouni

We discuss the relationship between ergodic shadowing property and inverse shadowing property offand that of the shift map σfon the inverse limit space.


2021 ◽  
Vol 19 (1) ◽  
pp. 1290-1298
Author(s):  
Zhanjiang Ji

Abstract First, we give the concepts of G-sequence shadowing property, G-equicontinuity and G-regularly recurrent point. Second, we study their dynamical properties in the inverse limit space under group action. The following results are obtained. (1) The self-mapping f f has the G-sequence shadowing property if and only if the shift mapping σ \sigma has the G ¯ \overline{G} -sequence shadowing property; (2) The self-mapping f f is G-equicontinuous if and only if the shift mapping σ \sigma is G ¯ \overline{G} -equicontinuous; (3) R R G ¯ ( σ ) = lim ← ( R R G ( f ) , f ) R{R}_{\overline{G}}\left(\sigma )=\underleftarrow{\mathrm{lim}}\left(R{R}_{G}(f),f) . These conclusions make up for the lack of theory in the inverse limit space under group action.


2008 ◽  
Vol 58 (1) ◽  
Author(s):  
Ekta Shah ◽  
T. Das

AbstractWe study here the G-shadowing property of the shift map σ on the inverse limit space X f, generated by an equivariant self-map f on a metric G-space X.


Author(s):  
Jiandong Yin ◽  
Meihua Dong

In this paper it is proved that a topologically stable invariant measure has no sinks or sources in its support; an expansive homeomorphism is topologically stable if it exhibits a topologically stable nonatomic Borel support measure and a continuous map has the shadowing property if there exists an invariant measure with the shadowing property such that each almost periodic point is contained in the support of the invariant measure.


2017 ◽  
Vol 37 (2) ◽  
pp. 85-99
Author(s):  
Josiney A. Souza ◽  
Hélio V. M. Tozatti

This paper studies dispersiveness of semiflows on fiber bundles. The main result says that a right invariant semiflow on a fiber bundle is dispersive on the base space if and only if there is no almost periodic point and the semiflow is dispersive on the total space. A special result states that linear semiflows on vector bundles are not dispersive.


2016 ◽  
Vol 38 (4) ◽  
pp. 1499-1524 ◽  
Author(s):  
JUDY KENNEDY ◽  
VAN NALL

Set-valued functions from an interval into the closed subsets of an interval arise in various areas of science and mathematical modeling. Research has shown that the dynamics of a single-valued function on a compact space are closely linked to the dynamics of the shift map on the inverse limit with the function as the sole bonding map. For example, it has been shown that with Devaney’s definition of chaos the bonding function is chaotic if and only if the shift map is chaotic. One reason for caring about this connection is that the shift map is a homeomorphism on the inverse limit, and therefore the topological structure of the inverse-limit space must reflect in its richness the dynamics of the shift map. In the set-valued case there may not be a natural definition for chaos since there is not a single well-defined orbit for each point. However, the shift map is a continuous single-valued function so it together with the inverse-limit space form a dynamical system which can be chaotic in any of the usual senses. For the set-valued case we demonstrate with theorems and examples rich topological structure in the inverse limit when the shift map is chaotic (on certain invariant sets). We then connect that chaos to a property of the set-valued function that is a natural generalization of an important chaos producing property of continuous functions.


1988 ◽  
Vol 8 (2) ◽  
pp. 155-172 ◽  
Author(s):  
Joseph Auslander ◽  
Nelson Markley

AbstractThe totally minimal flow (X, T) is said to have finite almost periodic rank if there is a positive integer n such that whenever (x1, x2,…, xn+1) is an almost periodic point of the product flow (Xn+1, T×…×T) then, for some i≠j, xi, and xj are in the same orbit. The rank of (X, T) is the smallest such integer. If (Y, S) is a graphic flow, (Y, Sn) has rank |n| and it is shown that every finite rank flow has, modulo a proximal extension, a graphic power factor. Various classes of finite rank flows are defined, and characterized in terms of their Ellis groups. There are four disjoint types which have basic structural differences.


Sign in / Sign up

Export Citation Format

Share Document