scholarly journals Development and Validation of a Stability-Indicating HPLC Method for the Simultaneous Determination of trans-Resveratrol and cis-Resveratrol in an Injectable Solution

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Esmeralda Mota-Lugo ◽  
Mariana Dolores-Hernández ◽  
Elvia A. Morales-Hipólito ◽  
Iris A. Blanco-Alcántara ◽  
Hugo Cuatecontzi-Flores ◽  
...  

trans-Resveratrol, a phytochemical compound with antioxidant power and various therapeutic effects, such as cardioprotective, chemopreventive, and neuroprotective, among others, has disadvantages of poor solubility and limited stability, creating difficulties for the development of new strategies for its quantification. This study developed and validated an analytical stability method for trans-resveratrol by high-pressure liquid chromatography with photodiode-array detection (HPLC-PDA), which allowed its quantification in the presence of its degradation products. The quantification of trans-resveratrol occurred at a retention time of 2.6 min, with ammonium formate (10 mM, pH = 4)/acetonitrile, 70/30 v/v, as mobile phase. The validation met the ICH Q2 criteria of specificity, method linearity (2.8–4.2 μg/ml), precision and accuracy, robustness, quantification limit (0.176 μg/ml), and detection (0.058 μg/ml). As degradation products, cis-resveratrol was observed at 3.9 min, which could be resveratrone in 3.2 min and five unidentified products in 0.7, 1.0, 1.4, 1.8, and 5 min. Some solutions subjected to temperature stress of 40 and 60°C, UV light, and acidic and basic hydrolysis exhibited colour changes. An analytical method was obtained by HPLC-PDA, which allowed quantifying the stability of trans-resveratrol in a fast and specific manner in the presence of its degradation products.

2012 ◽  
Vol 10 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Przemysław Zalewski ◽  
Judyta Cielecka-Piontek ◽  
Anna Jelińska

AbstractThe stability-indicating LC assay method was developed and validated for quantitative determination of cefoselis sulphate in the presence of degradation products formed during the forced degradation studies. An isocratic, RP-HPLC method was developed with C-18 (250 × 4.6 mm, 5 µm) column and 12 mM ammonium acetate-acetonitrile (95:5 V/V) as a mobile phase. The flow rate of the mobile phase was 1.0 mL min−1. Detection wavelength was 260 nm and temperature was 30°C. Cefoselis similarly to other cephalosporins was subjected to stress conditions of degradation in aqueous solutions including hydrolysis, oxidation, photolysis and thermal degradation. The developed method was validated with regard to linearity, accuracy, precision, selectivity and robustness. The method was applied successfully for identification and determination of cefoselis sulphate in pharmaceuticals and during kinetic studies.


2010 ◽  
Vol 46 (2) ◽  
pp. 305-310 ◽  
Author(s):  
Ana Paola Prata Cione ◽  
Márcio José Liberale ◽  
Paulo Marcos da Silva

A liquid chromatography method for evaluating the stability of Nystatin (Nys) in an ointment was developed and validated, since the traditional pharmacopeial microbiological methods are unable to indicate stability. The stress experiments showed that Nys was found to significantly degrade in alkaline and acidic conditions and also under oxidative stress. Lower levels of degradation were detected under heat and with the sample exposed to Xenon light. Resolutions higher than 2 for Nys and degradation products (DP) chromatographic peaks were achieved by using an Inerstil ODS-3 column, isocratic elution with methanol:water and UV detection at 305 nm. The system was found to be linear over a range of 102 to 310 IU mL-1 and proved precise, since the RSD(%) was 0.24% for the six replicates tested. The method also exhibited good levels of recovery (from 98.24% to 100.74%). Therefore, the validation fulfilled pharmacopeial requirements and the procedure was found to be reliable, precise, accurate and selective for determination of Nys and its degradation products.


2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Sun Hee Kim ◽  
Rita Marina Heeb ◽  
Irene Krämer

AbstractBackgroundProfound knowledge about the physicochemical stability is necessary in order to determine the “beyond-use-dates” of ready-to-administer preparations after reconstitution and dilution. This is especially true for unstable azanucleoside drugs like decitabine. The aim of this study was to determine the physicochemical stability of decitabine after reconstitution and dilution of DacogenMethodsTo determine the stability of frozen DacogenTo determine the stability of reconstituted DacogenDiluted DacogenDecitabine concentrations were determined at 0, 5, 8, 12, 24 and 48 hours after preparation. The pH-values were determined at 0, 8, 24 and 48 hours. Each sample was assayed by a validated stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with photodiode array detection.ResultsWhen test solutions of reconstituted DacogenIn reconstituted test solutions in glass vials and in diluted test solutions in infusion bags stored under refrigeration decitabine concentrations remained above 90 % of the initial concentration for 12 hours and 24 hours, respectively. Several peaks of degradation products were observed which explicitly increased over time.In all test solutions the pH-values amounted to pH 7 and remained unchanged. No particulate matter and no colour changes were observed over the test period.ConclusionsReconstituted decitabine solution (Dacogen


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


Author(s):  
Rochele Cassanta Rossi ◽  
Josué Guilherme Lisbôa Moura ◽  
Vanessa Mossmann ◽  
Patrícia Weimer ◽  
Pedro Eduardo Fröehlich

Abstract Fosamprenavir calcium is a protease inhibitor widely used in the treatment and prevention of human immunodeficiency virus and acquired immunodeficiency syndrome. This protease inhibitor serves as a prodrug of amprenavir, offering better oral bioavailability. Although this drug was approved by the FDA in 2003, there are few methods established for quantifying the stability for quality control analysis of fosamprenavir-coated tablets. The purpose of the study was to develop and validate a method for determining the stability of fosamprenavir-coated tablets (Telzir®) that may be applied by any quality control laboratory. Chromatographic separation was performed using a Vertical RP-18 column programmed to run a gradient elution with sodium acetate buffer and acetonitrile. Flow rate was 1.2 mL min−1 for a total run time of 15 min. Ultraviolet detection was set at 264 nm and the use of a photodiode array detector in scan mode allowed selectivity confirmation by peak purity evaluation. The analyte peak was found to be adequately separated from degradation products generated during forced degradation studies. Thus, the proposed method was found to accurately indicate stability and was sufficient for routine quantitative analysis of fosamprenavir in coated tablets without interference from major degradation products and excipients.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (09) ◽  
pp. 41-48
Author(s):  
R. N Kachave ◽  
◽  
P. B. Mandlik ◽  
S. R. Nisal

An RP-HPLC method was developed for the quantification of related impurities of lurasidone and its formulation. The chromatographic separation employs gradient elution using an Inertsil ODS C18 (150x4.6) mm, 5μm columns. Mobile phase consisting of solvent A-buffer (pH 3.0): methanol (90:10 %v/v) and solvent B-acetonitrile: water (80:20 % v/v) delivered at a flow rate of 1.0 mL/min. The analytes were detected and quantified at 210 nm using PDA. The method was validated as per ICH guidelines, demonstrating to be a simple, precise, selective, linear and accurate within the corresponding range of impurities of lurasidone. Linearity was observed in the concentration range of 2-6 µg/mL. The RT for Lurasidone was about 18.5 min and three known impurities at RRT about 0.15, 0.21 and 0.36. The specificity of the method was investigated under different stress conditions including hydrolytic, oxidative, photolytic and thermal as recommended by ICH guidelines. Relevant degradation was found to take place under oxidative conditions. Degradation impurities did not interfere with the RT of drug. The peak purity obtained with the aid of PDA detection and satisfactory resolution between related impurities established the specificity of the determination. All these results provide the stability indicating capability of the method.


2010 ◽  
Vol 93 (4) ◽  
pp. 1086-1092 ◽  
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka ◽  
ukasz Komsta

Abstract For type 2 diabetes treatment, combinations of drugs from the thiazolidinedione and sulfonylurea groups are now available in the same tablet or capsule. Therefore, a stability-indicating and validated HPLC method was developed for simultaneous determination of pioglitazone, rosiglitazone, and glipizide in combined dosage forms. The examined drugs were subjected to different conditions such as acid and base, temperature, and UV light, and degradation of pioglitazone and glipizide was observed under thermal and acidic stress. However, selectivity of the presented method for pioglitazone, rosiglitazone, and glipizide assay against their degradation products was confirmed. It was also demonstrated to be robust, resisting small deliberate changes in pH of the buffer, flow rate, and percentage of acetonitrile in the mobile phase. The presented method utilizes a LiChrospher RP18 column (125 4.0 mm), acetonitrile in phosphate buffer at pH 4.3 (40 + 60, v/v) as the mobile phase, and UV detection at 225 nm for pioglitazone/glipizide or 245 nm for rosiglitazone/glipizide. The method was validated with respect to linearity, precision, and accuracy. Finally, the elaborated procedure was applied for the QC of pioglitazone/glipizide and rosiglitazone/glipizide mixtures.


2010 ◽  
Vol 93 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Sejal K Patel ◽  
Natvarlal J Patel

Abstract This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 4.6 mm id, 5 m particle size) by using acetonitrilemethanol0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.55 g/mL with a mean recovery of 100.8 0.4 for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.


Sign in / Sign up

Export Citation Format

Share Document