A New, Rapid and Simple RP-HPLC Method for Stability Quantification of a Protease Inhibitor in Tablets

Author(s):  
Rochele Cassanta Rossi ◽  
Josué Guilherme Lisbôa Moura ◽  
Vanessa Mossmann ◽  
Patrícia Weimer ◽  
Pedro Eduardo Fröehlich

Abstract Fosamprenavir calcium is a protease inhibitor widely used in the treatment and prevention of human immunodeficiency virus and acquired immunodeficiency syndrome. This protease inhibitor serves as a prodrug of amprenavir, offering better oral bioavailability. Although this drug was approved by the FDA in 2003, there are few methods established for quantifying the stability for quality control analysis of fosamprenavir-coated tablets. The purpose of the study was to develop and validate a method for determining the stability of fosamprenavir-coated tablets (Telzir®) that may be applied by any quality control laboratory. Chromatographic separation was performed using a Vertical RP-18 column programmed to run a gradient elution with sodium acetate buffer and acetonitrile. Flow rate was 1.2 mL min−1 for a total run time of 15 min. Ultraviolet detection was set at 264 nm and the use of a photodiode array detector in scan mode allowed selectivity confirmation by peak purity evaluation. The analyte peak was found to be adequately separated from degradation products generated during forced degradation studies. Thus, the proposed method was found to accurately indicate stability and was sufficient for routine quantitative analysis of fosamprenavir in coated tablets without interference from major degradation products and excipients.

2015 ◽  
Vol 98 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Magda Ascaso ◽  
Pilar Pérez-Lozano ◽  
Mireia García ◽  
Encarna García-Montoya ◽  
Montse Miñarro ◽  
...  

Abstract A stability indicating method was established through a stress study, wherein different methods of degradation (oxidation, hydrolysis, photolysis, and temperature) were studied simultaneously to determine the active ingredient hydrocortisone acetate, preservatives propyl parahydroxybenzoate, and methyl parahydroxybenzoate, antioxidant butylhydroxyanisole (BHA), and their degradation products in a semisolid dosage gel form. The proposed method was suitably validated using a Zorbax SB-Phenyl column and gradient elution. The mobile phase consisted of a mixture of methanol, acetonitrile, and water in different proportions according to a planned program at a flow rate of 1.5 mL/min. The diode array detector was set at 240 nm for the active substance and two preservatives,and 290 nm for BHA. The validation study was conducted according to International Conference on Harmonization guidelines for specificity, linearity, repeatability, precision, and accuracy. The method was usedfor QC of hydrocortisone acetate gel and for the stability studies with the aim of quantifying the active substance, preservatives, antioxidant, and degradation products. It has proved to be suitable as a fast and reliable method for QC.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Anand A. Mahajan ◽  
Amey M. Marathe ◽  
Suvarna S. Jarande ◽  
Raghuvir Pissurlenkar ◽  
Vandana T. Gawande

Abstract Background The aim of the present work was to determine potential toxicity of degradation products of febantel generated under different stress conditions mentioned in guideline Q1A (R2) laid down by International Council for Harmonization (ICH). The stability behavior of febantel was studied by subjecting it to hydrolytic, oxidative, photolytic and thermal forced degradation conditions. Results Five degradation products (DPs) were observed which were resolved using high-performance liquid chromatography (HPLC) and characterized by LC-MS/MS using positive mode of electrospray ionization. The chromatographic separation was carried out on Hypersil® BDS C18 (150 × 4.6 mm, 5 μm) column. Optimum resolution was obtained using ammonium formate buffer (10 mM, pH 3.5) and acetonitrile programmed in gradient elution mode at 281.0 nm using photodiode array detector. Conclusion The drug was found susceptible to degradation under all the stress conditions except thermal and oxidative stress. Five major unknown degradation products DP–I, DP–II, DP–III, DP–IV, and DP–V generated under photolytic, alkali, and acidic stress condition were identified and characterized by LC-MS/MS. The drug and identified degradation products were screened for prediction of in-silico toxicity using software viz. Swiss ADME, OSIRIS Property Explorer and Pro Tox II which indicated overall no toxicological concerns. Graphical abstract


2020 ◽  
Vol 16 (7) ◽  
pp. 831-843
Author(s):  
Yuwen Wang ◽  
Shuping Li ◽  
Liuhong Zhang ◽  
Shenglan Qi ◽  
Huida Guan ◽  
...  

Background and Objective: Kang Fu Xin liquid (KFX) is an official preparation made from the ethanol extract product from P. Americana. The present quality control method cannot control the quality of the preparation well. The aim of the present study is to establish a convenient HPLC method for multicomponents determination combined with fingerprint analysis for quality control of KFX. Methods: An HPLC-DAD method with gradient elution and detective wavelength switching program was developed to establish HPLC fingerprints of KFX, and 38 batches of KFX were compared and evaluated by similarity analysis (SA), hierarchical clustering analysis (HCA), and principal component analysis (PCA). Meanwhile, six nucleosides and three amino acids, including uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan in KFX were determined based on the HPLC fingerprints. Results: An HPLC method assisted with gradient elution and wavelength switching program was established and validated for multicomponents determination combined with fingerprint analysis of KFX. The results demonstrated that the similarity values of the KFX samples were more than 0.845. PCA indicated that peaks 4 (hypoxanthine), 7 (xanthine), 9 (tyrosine), 11, 13 and 17 might be the characteristic contributed components. The nine constituents in KFX, uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan, showed good regression (R2 > 0.9997) within test ranges and the recoveries of the method for all analytes were in the range from 96.74 to 104.24%. The limits of detections and quantifications for nine constituents in DAD were less than 0.22 and 0.43 μg•mL-1, respectively. Conclusion: The qualitative analysis of chemical fingerprints and the quantitative analysis of multiple indicators provide a powerful and rational way to control the KFX quality for pharmaceutical companies.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Reema H. Rupareliya ◽  
Hitendra S. Joshi

A simple, precise, and accurate RP-HPLC method has been developed and validated for the simultaneous assay of Telmisartan and Cilnidipine in tablets. Isocratic RP-HPLC method was developed on Waters C18 250×4.6 mm, 5 μm column using mobile phase as acetonitrile (ACN): buffer pH 3.0 with orthophosphoric acid (68 : 32) at a flow rate of 1.0 mL/min and the detection was carried out at 245 nm using photodiode array detector. Forced degradation study was carried out by oxidation, hydrolysis, photolysis, and heating the drug. The method was validated for specificity, linearity, precision, accuracy, robustness, and solution stability. The method was found to be linear in the concentration range of 40–160 μg/mL with correlation coefficient of 0.9990 for Telmisartan and 10–40 μg/mL with correlation coefficient of 0.9989 for Cilnidipine. Degradation products produced as a result of stress studies did not interfere with the detection of agomelatine; therefore, the assay can be considered to be stability indicating.


2020 ◽  
Vol 8 (1) ◽  
pp. 15-20
Author(s):  
Yuni Retnaningtyas ◽  
Nia Kristiningrum ◽  
Hidayah Dwi Renggani ◽  
Indah Purnama Sary

The stability indication of Reversed Phase-High Performance Liquid Chromatography (RP-HPLC) method was validated for quantitative determination of mangiferin on three species mango leaves (Mangifera odorata Griff, Mangifera foetida Lour, and Mangifera indica L.). The samples were extracted by maseration method using methanol and concentrated using rotary evaporator. The method carried out on stationary phase a purospher RP-18 endcapped (25 cm × 4.6 mm i.d., 5 µm) column with a mobile phase consisting of methanol: phosphoric acid 0.1% (v/v) (31:69); flow rate:0.8 mL/min; solvent methanol, detection was carried out at 258 nm. The analytical  performace this measurement is good with the value of linearity (r2=0.998), precision (%RSD=0.649%), and accuration (10.67%). The forced degradation studies were carried out according to the International Conference on Harmonization (ICH) guidelines. The results indicating that the complete separation between degradation products and mangiferin peak occured. The degradation limit of mangiferin 5–20% (according to the guideline of ICH) except in basic condition (100%). The method was succesful applied to determine of the mangiferin in  pakel (Mangifera foetida), kweni (Mangifera indica) and kopyor (Mangifera odorata) extract. The mangiferin content was obtained are pakel (9.95%), kopyor (7.40%) and kweni (Mangifera odorata) (2.49%) respectively.


2020 ◽  
Vol 4 (1) ◽  
pp. 28-38
Author(s):  
Simony Martiny ◽  
Mairique Waszczuk ◽  
Samuel Kaiser ◽  
Marina Cardoso Nemitz ◽  
Valquiria Linck Bassani

The purpose of this study was to develop and validate a fast HPLC stability-indicating method for simultaneously quantifying the four main isoflavones in Trifolium pratense. Validation procedures followed the ICH requirements for complex matrices. The stability-indicating tests were performed by exposing the isoflavones to conditions of forced degradation and further analysis for verifying the formation of degradation products and their possible interferences in the HPLC analysis. The major isoflavones of Trifolium pratense proved to be stable against acid and oxidative media, thermodegradation, and photodegradation. However, they proved to be unstable in alkaline media, even for short periods of exposure like 2h. In this condition, in addition to the peaks corresponding to isoflavones, the HPLC analysis showed the presence of three additional peaks which were eluted at different retention times to the reference substances, without interfering in the quantification of the four analytes of interest, formononetin, biochanin A, daidzein and genistein. The method was validated following ICH guidelines showing to be specific, linear, precise, accurate, and robust.This first report concerning a stability-indicating method revealed that the proposed HPLC method reliably quantify the isoflavones and separate them from the degradation products in a short time of analysis.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (02) ◽  
pp. 34-39
Author(s):  
M Puranik ◽  
◽  
P. G. Yeole ◽  
S. J. Wadher

The stability of pharmaceutical products plays an important role from the economical point of view. There are not many studies that report about the stability of drugs past their expiration dates. The objective of the current study was to determine tablet content and perform dissolution test of expired tablets of amlodipine besylate and tablets where expiry date has not exceeded and to develop simple, accurate, sensitive and stability indicating RP-HPLC method for the determination of per cent drug remained of Amlodipine besylate in the presence of its degradation products in bulk drug, expired tablets and tablets whose expiry date has not been exceeded. Drug was subjected to all stress conditions such as hydrolysis (acidic and alkaline), oxidation (3% H2O2 v/v), photolysis, thermal degradation and humidity study. Content determination was performed using spectrophotometric and RP-HPLC method; the per cent of dissolved substance from tablets during dissolution test was performed using spectrophotometric method and detection was made at 239 nm. All stressed samples were successfully analysed on C18 column using mobile phase phosphate buffer pH 3.5 (50mM): methanol: acetonitrile in the ratio of 30:60:10 v/v/v. A flow rate was maintained at 1.5 ml/min and detection was made at 240 nm. The proposed methods were validated with regard to linearity, sensitivity, and intermediate accuracy and precision. No discrepancies between the results of determination and the declared values range for all the analysed tablets were observed. The results of performed study might suggest that storage of analysed batches of tablets over time period exceeding the expiry date given by the manufacturer did not influence their contents.


2012 ◽  
Vol 10 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Przemysław Zalewski ◽  
Judyta Cielecka-Piontek ◽  
Anna Jelińska

AbstractThe stability-indicating LC assay method was developed and validated for quantitative determination of cefoselis sulphate in the presence of degradation products formed during the forced degradation studies. An isocratic, RP-HPLC method was developed with C-18 (250 × 4.6 mm, 5 µm) column and 12 mM ammonium acetate-acetonitrile (95:5 V/V) as a mobile phase. The flow rate of the mobile phase was 1.0 mL min−1. Detection wavelength was 260 nm and temperature was 30°C. Cefoselis similarly to other cephalosporins was subjected to stress conditions of degradation in aqueous solutions including hydrolysis, oxidation, photolysis and thermal degradation. The developed method was validated with regard to linearity, accuracy, precision, selectivity and robustness. The method was applied successfully for identification and determination of cefoselis sulphate in pharmaceuticals and during kinetic studies.


2019 ◽  
Vol 32 (2) ◽  
pp. 219-227
Author(s):  
Y.V.S. Veerendra ◽  
Pradeep Kumar Brahman ◽  
Sharad D. Mankumare ◽  
Jaya Raju CH ◽  
J. Satish

The present work demonstrates the development of an optimal, robust, validated UHPLC method for quantification of related impurities and assay determination of spironolactone. Design of experiment procedure, in combination with statistical evaluation of the data was used to test the robustness of developed method. A stability indicating method was established by forced degradation experiments. Analytical robustness was determined using design of experiment approach. The chromatographic separation was achieved with Agilent SB-C18 RRHD column using gradient elution with mobile phase-A consists of a mixture of 0.1 % each formic acid and ammonia in water and methanol as mobile phase-B respectively. The developed method is exhaustively validated for parameters like precision, accuracy, linearity, LOD, LOQ, ruggedness and robustness. The stability tests were also performed on drug substances as per ICH norms. Base line separation was achieved for all impurities, degradation products and the API. All impurities were eluted within 12 min, there was a remarkable 3.5-fold decrease in runtime and a clear baseline separation between all peaks in comparison with Ph.Eur monograph. A multi-dimensional design space was built to study the robustness of developed method using design expert software. Significant parameters such as effect of flow rate, buffer strength and mobile phase compositions were optimized at three levels. Plackett-Burman design was applied for screening of chromatographic conditions and factorial design was applied for optimization of essential factors in robustness studies.


Sign in / Sign up

Export Citation Format

Share Document