scholarly journals Quantitative Measurement of Plasma Free Metanephrines by a Simple and Cost-Effective Microextraction Packed Sorbent with Porous Graphitic Carbon and Liquid Chromatography-Tandem Mass Spectrometry

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Xiong ◽  
Yuanyuan Zhang ◽  
Rongsheng Zhao

Plasma free metanephrines are widely used for the diagnosis of pheochromocytoma and paraganglioma (PPGL), yet quantifying metanephrines using a simple and cost-effective approach may be challenging due to preanalytical and analytical constraints. In this study, we established and validated a new method for quantitative measurement of plasma free metanephrines based on microextraction by packed sorbent (MEPS) with porous graphitic carbon (PGC) and liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The elution step was fully compatible with HILIC mode without evaporation and reconstitution. The analytes were well resolved, and potential interferences (54 substances) were investigated. This method was linear from 24.7–2717 pg/mL for metanephrine (MN) and 24.5–4010 pg/mL for normetanephrine (NMN) with a coefficient of determination (R2) higher than 0.994. The limit of MN and NMN detection were 12.4 pg/mL and 12.3 pg/mL, respectively. The intra- and interassay impressions were ≤12.8% for spiked quality controls and ≤13.6% for commercial quality controls; the method recoveries ranged within 88.0–109.0%, respectively. The area under the receiver operating characteristic (ROC) curve was 0.848 ± 0.047 for MN and 0.979 ± 0.021 for NMN. Validation that was performed by comparing clinical specimens with various biochemical results showed that plasma free metanephrines in a seated position had comparable sensitivity and lower specificity to urinary free metanephrines, which could be compensated by combining other biochemical tests. The newly developed MEPS method resulted as a time-saving, reliable, and cost-effective microextraction technique that can be applied for a successful screening of PPGL.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hytham Ahmed ◽  
Abdel-Aziz Wahbi ◽  
Hatem Elmongy ◽  
Ahmad Amini ◽  
Hirsh Koyi ◽  
...  

In the present work, the determination of omeprazole (OME) enantiomers in oral fluid and plasma samples was carried out utilizing microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry. A chiral column with cellulose-SB phase was used for the first time for enantiomeric separation of OME with an isocratic elution system using 0.2% ammonium hydroxide in hexane-ethanol mixture (70 : 30, v/v) as the mobile phase. OME enantiomers were determined utilizing a triple quadrupole tandem mass spectrometer in positive ion mode (ESI+) monitoring mass transitions: m/z 346.3 ⟶ 198.0 for OME and m/z 369.98 ⟶ 252.0 for internal standard. The limits of detection and quantification of the present method for both enantiomers were 0.1 and 0.4 ng/mL, respectively. The method validation provided good accuracy and precision. The matrix effect factor was less than 5%, and no interfering peaks were observed. The interday precision values ranged from 2.2 to 7.5 (%RSD), and the accuracy of determinations varied from −9.9% to 8.3%. In addition, the pharmacokinetics (PK) of omeprazole enantiomers in healthy subjects after a single oral dose was investigated. (S)-Enantiomers showed higher levels than (R)-enantiomers throughout 24 h. It was found that the mean maximum concentrations of (R)- and (S)-omeprazole in plasma samples were about two times higher than in oral fluid.


Sign in / Sign up

Export Citation Format

Share Document