scholarly journals Permeability Evolution of an Intact Marble Core during Shearing under High Fluid Pressure

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuan Wang ◽  
Yu Jiao ◽  
Shaobin Hu

The progressive shear failure of a rock mass under hydromechanical coupling is a key aspect of the long-term stability of deeply buried, high fluid pressure diversion tunnels. In this study, we use experimental and numerical analysis to quantify the permeability variations that occur in an intact marble sample as it evolves from shear failure to shear slip under different confining pressures and fluid pressures. The experimental results reveal that at low effective normal stress, the fracture permeability is positively correlated with the shear displacement. The permeability is lower at higher effective normal stress and exhibits an episodic change with increasing shear displacement. After establishing a numerical model based on the point cloud data generated by the three-dimensional (3D) laser scanning of the fracture surfaces, we found that there are some contact areas that block the percolation channels under high effective stress conditions. This type of contact area plays a key role in determining the evolution of the fracture permeability in a given rock sample.

2019 ◽  
Vol 74 ◽  
pp. 216-236 ◽  
Author(s):  
Ryan A. Lacombe ◽  
John W.F. Waldron ◽  
S. Henry Williams ◽  
Nicholas B. Harris

2020 ◽  
Vol 223 (3) ◽  
pp. 1481-1496
Author(s):  
Elif Cihan Yildirim ◽  
Kyungjae Im ◽  
Derek Elsworth

SUMMARY Mechanisms controlling fracture permeability enhancement during injection-induced and natural dynamic stressing remain unresolved. We explore pressure-driven permeability (k) evolution by step-increasing fluid pressure (p) on near-critically stressed laboratory fractures in shale and schist as representative of faults in sedimentary reservoirs/seals and basement rocks. Fluid is pulsed through the fracture with successively incremented pressure to first examine sub-reactivation permeability response that then progresses through fracture reactivation. Transient pore pressure pulses result in a permeability increase that persists even after the return of spiked pore pressure to the null background level. We show that fracture sealing is systematically reversible with the perturbing pressure pulses and pressure-driven permeability enhancement is eminently reproducible even absent shear slip and in the very short term (order of minutes). These characteristics of the observed fracture sealing following a pressure perturbation appear similar to those of the response by rate-and-state frictional healing upon stress/velocity perturbations. Dynamic permeability increase scales with the pore pressure magnitude and fracture sealing controls the following per-pulse permeability increase, both in the absence and presence of reactivation. However, initiation of the injection-induced reactivation results in a significant increase in the rate of permeability enhancement (dk/dp). These results demonstrate the role of frictional healing and sealing of fractures at interplay with other probable processes in pore pressure-driven permeability stimulation, such as particle mobilization.


2020 ◽  
Author(s):  
Caiyuan Fan ◽  
Jinfeng Liu ◽  
Luuk B. Hunfeld ◽  
Christopher J. Spiers

Abstract. Previous studies show that organic-rich fault patches may play an important role in promoting unstable fault slip. However, the frictional properties of rock materials with near 100 % organic content, e.g. coal, and the controlling microscale mechanisms, remain unclear. Here, we report seven velocity stepping (VS) and one slide-hold-slide (SHS) friction experiments performed on simulated fault gouges prepared from bituminous coal, collected from the upper Silesian Basin of Poland. These experiments were performed at 25–45 MPa effective normal stress and 100 °C, employing sliding velocities of 0.1–100 μm s−1, using a conventional triaxial apparatus plus direct shear assembly. All samples showed marked slip weakening behaviour at shear displacements beyond ~ 1–2 mm, from a peak friction coefficient approaching ~ 0.5 to (near) steady state values of ~ 0.3, regardless of effective normal stress or whether vacuum dry flooded with distilled (DI) water at 15 MPa pore fluid pressure. Analysis of both unsheared and sheared samples by means of microstructural observation, micro-area X-ray diffraction (XRD) and Raman spectroscopy suggests that the marked slip weakening behaviour can be attributed to the development of R-, B- and Y- shear bands, with internal shear-enhanced coal crystallinity development. The SHS experiment performed showed a transient peak healing (restrengthening) effect that increased with the logarithm of hold time at a linearized rate of ~ 0.006. We also determined the rate-dependence of steady state friction for all VS samples using a full rate and state friction approach. This showed a transition from velocity strengthening to velocity weakening at slip velocities > 1 μm s−1 in the coal sample under vacuum dry conditions, but at > 10 μm s−1 in coal samples exposed to DI water at 15 MPa pore pressure. This may be controlled by competition between dilatant granular flow and compaction enhanced by presence of water. Together with our previous work on frictional properties of coal-shale mixtures, our results imply that the presence of a weak, coal-dominated patch on faults that cut or smear-out coal seams may promote unstable, seismogenic slip behaviour, though the importance of this in enhancing either induced or natural seismicity depends on local conditions.


2020 ◽  
Vol 789 ◽  
pp. 228521
Author(s):  
Sho Kimura ◽  
Shohei Noda ◽  
Takuma Ito ◽  
Jun Katagiri ◽  
Hiroaki Kaneko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document