scholarly journals Pluripotency of Dental Pulp Cells and Periodontal Ligament Cells Was Enhanced through Cell-Cell Communication via STAT3/Oct-4/Sox2 Signaling

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhengjun Peng ◽  
Lu Liu ◽  
Wenyu Zhang ◽  
Xi Wei

Alternation in culture environment due to cell-cell communications can rejuvenate the biological activity of aged/differentiated cells and stimulate the expression of pluripotency markers. Dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) are promising candidates in dental tissue regeneration. However, the molecular network that underlies cell-cell communications between dental-derived cells and the microenvironment remains to be identified. To elucidate the signaling network that regulates the pluripotency of DPCs and PDLCs, proliferation, apoptosis, cell cycle, and the expression of Oct-4/Sox2/c-Myc in DPCs and PDLCs with indirect/direct coculture were examined. PCR arrays were constructed to identify genes that were differentially expressed, and the results were confirmed by a rat model with injury. Further research on the mechanism of the related signaling pathways was investigated by overexpression/silence of STAT3, ChIP, the dual-luciferase reporter assay, and EMSA. We found that the proliferation and apoptosis of DPCs and PDLCs were inhibited, and their cell cycles were arrested at the G0/G1 phase after coculture. Oct-4, Sox2, and STAT3 expression significantly increased and PAX5 expression decreased in the coculture systems. Oct-4/Sox2/STAT3/PAX5 was actively expressed in the rat defect model. Moreover, STAT3 was directly bound to the Oct-4 and Sox2 gene promoter regions and activated the expression of those genes. Our data showed that the pluripotency of DPCs and PDLCs was enhanced through cell-cell communication. STAT3 plays essential roles in regulating the pluripotency of DPCs and PDLCs by targeting Oct-4 and Sox2 both in vitro and in vivo.

2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


1997 ◽  
Vol 1 (3) ◽  
pp. 131-140 ◽  
Author(s):  
L. Stanislawski ◽  
J. P. Carreau ◽  
M. Pouchelet ◽  
Z. H. J. Chen ◽  
M. Goldberg

2008 ◽  
Vol 34 (9) ◽  
pp. 1057-1060 ◽  
Author(s):  
Yoshiyuki Yasuda ◽  
Masafumi Ogawa ◽  
Toshiya Arakawa ◽  
Tomoko Kadowaki ◽  
Takashi Saito

2011 ◽  
Vol 50 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Georgios N. Belibasakis ◽  
Andre Meier ◽  
Bernhard Guggenheim ◽  
Nagihan Bostanci

Sign in / Sign up

Export Citation Format

Share Document