scholarly journals Pore Structure Differentiation between Deltaic and Epicontinental Tight Sandstones of the Upper Paleozoic in the Eastern Linxing Area, Ordos Basin, China

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jimei Deng ◽  
Huan Zeng ◽  
Peng Wu ◽  
Jia Du ◽  
Jixian Gao ◽  
...  

Research on tight gas reservoirs in the eastern margin of the Ordos Basin, China, has recently become a hot spot. This paper mainly studies the reservoir characteristics of tight sandstone in the north-central area close to the provenance in eastern Linxing. Cast thin section, scanning electron microscopy, high-pressure mercury injection, and X-ray diffraction (XRD) were applied to discriminate the tight sandstone reservoir differences between the Permian Taiyuan and Shanxi formations in the study area. The results show that the deltaic tight sandstones in the Shanxi Formation are dominated by lithic quartz sandstone and lithic sandstone with an average porosity of 2.3% and permeability of 0.083 mD. The epicontinental tight sandstones in the Taiyuan Formation are mainly lithic sandstone and lithic quartz sandstone, with average porosities and permeabilities of 6.9% and 0.12 mD, respectively. The pore type is dominated by secondary dissolution pores, containing a small number of primary pores, and fractures are not developed. The capillary pressure curves of the Taiyuan Formation sandstone are mainly of low displacement pressure, high mercury saturation, and mercury withdrawal efficiency, while the Shanxi Formation sandstone is mainly of high displacement pressure, low mercury saturation, and withdrawal efficiency. The diagenetic evolution of sandstone in the Shanxi Formation is in meso-diagenesis stage A, and the Taiyuan Formation has entered meso-diagenesis stage B. The siliceous cement in the Taiyuan Formation sandstone enhanced the sandstone resistance to compaction and retained some residual intergranular pores. The pore types in the Shanxi Formation sandstone are all secondary pores, while secondary pores in the Taiyuan Formation sandstone account for approximately 90%. The results can be beneficial for tight gas production in the study area and similar basins.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minhua Cheng ◽  
Wen Xue ◽  
Meng Zhao ◽  
Guoting Wang ◽  
Bo Ning ◽  
...  

Successful exploitation of tight sandstone gas is one of the important means to ensure the “increasing reserves and production” of the oil and gas initiative and also one of the important ways to ensure national energy security. To further improve the accuracy of historical matching of field data such as gas production and bottom-hole pressure during the production process of this type of gas reservoir, in this study, a new expression of wellbore pressure for the uniform flow of vertical fractured wells in Laplace space based on the point sink function model of vertical fractures in tight sandstone gas reservoirs is constructed. This innovation is based on a typical production data analysis plot of the Blasingame type that uses the numerical inversion decoupling mathematical equation. After analyzing the pressure and pressure derivative characteristics of each flow stage in the typical curves, a new technique of type-curve matching was proposed. In order to verify the correctness of the model and the application value of the field, based on the previous production data of Sulige Gas Field in China, a new set of production data diagnostic chart of tight sandstone gas reservoir was formed. A case analysis showed that the application of the production data analysis method and data diagnosis plot in the field accurately evaluated the development effect of the tight sandstone gas reservoirs, clarified the scale of effective sand bodies, and provided technical support for optimizing and improving the well pattern and realizing the efficient development of gas fields.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2726-2737

Unconventional gas reservoirs are now the targets for meeting the demand for gas. These reservoirs are at the depth of more than 10,000 ft (even over 15000 depth as well) and are difficult to be exploited by conventional methods. For the last decades hydraulic fracturing has become the tool to develop these resources. Mathematical models (2D and pseudo-3D) have been developed for fracture geometry, which should be realistically created at the depth by surface controllable treatment parameters. If the reservoir rock is sandstone, then proppant fracturing is suitable and if the rock is carbonates, then acid fracturing is applicable. In both cases, proper design of controllable treatment parameters within constraints is essential. This needs proper optimization model which gives real controllable parametric vales. The model needs the most important analyses from geomechanical study and linear elastic fracture mechanics of rock containing unconventional gas so that fracture geometry makes maximum contact with the reservoirs for maximum recovery. Currently available software may lack proper optimization scheme containing geomechanical stress model, fracture geometry, natural fracture interactions, real field constraints and proper reservoir engineering model of unconventional gas resources, that is, production model from hydraulically fractured well (vertical and horizontal). An optimization algorithm has been developed to integrate all the modules, as mentioned above, controllable parameters, field constraints and production model with an objective function of maximum production (with or without minimization of treatment cost). Optimization is basically developed based on Direct Search Genetic and Polytope algorithm, which can handle dual objective function, non-differentiable equations, discontinuity and non-linearity. A dual objective function will meet operator’s economic requirements and investigate conflict between two objectives. The integrated model can be applied to a vertical or horizontal well in tight gas or ultra-tight shale gas deeper than over 10,000 ft. A simulation (with industrial simulators) was conducted to investigate and analyse fracture propagation behavior, under varying parameters with respect to the fracture design process, for tight gas reservoirs. Results indicate that hydraulic fracture propagation behavior is not uninhibited in deep reservoirs as some may believe that minor variations of variables such as in-situ stress, fluid properties etc. are often detrimental to fracture propagation in some conditions. Application of this model to a hypothetical tight and ultra-tight unconventional gas formations indicates a significant gas production at lower treatment cost; whereas the resources do not flow without any stimulation (hydraulic fracturing).


2022 ◽  
pp. 217-243
Author(s):  
Mi Li ◽  
Yinghai Guo ◽  
Zhuangfu Li ◽  
Huaichang Wang ◽  
A.J. (Tom) van Loon

2015 ◽  
Author(s):  
Rinat B Lukmanov ◽  
Ehab Gaafer Ibrahim ◽  
Mohammed Aamri

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7225
Author(s):  
Chuantong Ruan ◽  
Jing Ba ◽  
José M. Carcione ◽  
Tiansheng Chen ◽  
Runfa He

Low porosity-permeability structures and microcracks, where gas is produced, are the main characteristics of tight sandstone gas reservoirs in the Sichuan Basin, China. In this work, an analysis of amplitude variation with offset (AVO) is performed. Based on the experimental and log data, sensitivity analysis is performed to sort out the rock physics attributes sensitive to microcrack and total porosities. The Biot–Rayleigh poroelasticity theory describes the complexity of the rock and yields the seismic properties, such as Poisson’s ratio and P-wave impedance, which are used to build rock-physics templates calibrated with ultrasonic data at varying effective pressures. The templates are then applied to seismic data of the Xujiahe formation to estimate the total and microcrack porosities, indicating that the results are consistent with actual gas production reports.


Sign in / Sign up

Export Citation Format

Share Document