scholarly journals Inferences for Generalized Pareto Distribution Based on Progressive First-Failure Censoring Scheme

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rashad M. El-Sagheer ◽  
Taghreed M. Jawa ◽  
Neveen Sayed-Ahmed

In this article, we consider estimation of the parameters of a generalized Pareto distribution and some lifetime indices such as those relating to reliability and hazard rate functions when the failure data are progressive first-failure censored. Both classical and Bayesian techniques are obtained. In the Bayesian framework, the point estimations of unknown parameters under both symmetric and asymmetric loss functions are discussed, after having been estimated using the conjugate gamma and discrete priors for the shape and scale parameters, respectively. In addition, both exact and approximate confidence intervals as well as the exact confidence region for the estimators are constructed. A practical example using a simulated data set is analyzed. Finally, the performance of Bayes estimates is compared with that of maximum likelihood estimates through a Monte Carlo simulation study.

2017 ◽  
Vol 6 (3) ◽  
pp. 141 ◽  
Author(s):  
Thiago A. N. De Andrade ◽  
Luz Milena Zea Fernandez ◽  
Frank Gomes-Silva ◽  
Gauss M. Cordeiro

We study a three-parameter model named the gamma generalized Pareto distribution. This distribution extends the generalized Pareto model, which has many applications in areas such as insurance, reliability, finance and many others. We derive some of its characterizations and mathematical properties including explicit expressions for the density and quantile functions, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, R\'enyi entropy and order statistics. We discuss the estimation of the model parameters by maximum likelihood. A small Monte Carlo simulation study and two applications to real data are presented. We hope that this distribution may be useful for modeling survival and reliability data.


Author(s):  
Shaowei Li ◽  
Wenhao Gui

In this paper, based on the progressively type II censoring data of generalized Pareto distribution, we consider the maximum likelihood estimation and asymptotic interval estimations of survival function and hazard function by using the Fisher information matrix and delta method. Also, we present a nonparametric Bootstrap-p method to generate the bootstrap samples and derive confidence interval estimation. In addition, we propose the Bayes estimator of Adaptive Rejection Metropolis Sampling algorithm to derive the point estimate and credible intervals. Finally, Monte Carlo simulation study is carried out to compare the performances of the three proposed methods based on different data schemes. An illustrative example is presented.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 319 ◽  
Author(s):  
Xuehua Hu ◽  
Wenhao Gui

In this paper, first we consider the maximum likelihood estimators for two unknown parameters, reliability and hazard functions of the generalized Pareto distribution under progressively Type II censored sample. Next, we discuss the asymptotic confidence intervals for two unknown parameters, reliability and hazard functions by using the delta method. Then, based on the bootstrap algorithm, we obtain another two pairs of approximate confidence intervals. Furthermore, by applying the Markov Chain Monte Carlo techniques, we derive the Bayesian estimates of the two unknown parameters, reliability and hazard functions under various balanced loss functions and the corresponding confidence intervals. A simulation study was conducted to compare the performances of the proposed estimators. A real dataset analysis was carried out to illustrate the proposed methods.


2001 ◽  
Vol 38 (A) ◽  
pp. 158-175 ◽  
Author(s):  
Y. Y. Kagan ◽  
F. Schoenberg

The tapered (or generalized) Pareto distribution, also called the modified Gutenberg-Richter law, has been used to model the sizes of earthquakes. Unfortunately, maximum likelihood estimates of the cutoff parameter are substantially biased. Alternative estimates for the cutoff parameter are presented, and their properties discussed.


2010 ◽  
Vol 26 ◽  
pp. 113-117 ◽  
Author(s):  
R. Tolosana-Delgado ◽  
M. I. Ortego ◽  
J. J. Egozcue ◽  
A. Sánchez-Arcilla

Abstract. A reparametrization of the Generalized Pareto Distribution is here proposed. It is suitable to parsimoniously check trend assumptions within a Point-Over-Threshold model of hazardous events. This is based on considerations about the scale of both the excesses of the event magnitudes and the distribution parameters. The usefulness of this approach is illustrated with a data set from two buoys, where hypotheses about the homogeneity of climate conditions and lack of trends are assessed.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-17
Author(s):  
Gyan Prakash

In the present study, the Pareto model is considered as the model from which observations are to be estimated using a Bayesian approach. Properties of the Bayes estimators for the unknown parameters have studied by using different asymmetric loss functions on hybrid censoring pattern and their risks have compared. The properties of maximum likelihood estimation and approximate confidence length have also been investigated under hybrid censoring. The performances of the procedures are illustrated based on simulated data obtained under the Metropolis-Hastings algorithm and a real data set.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Najma Salahuddin ◽  
Alamgir Khalil ◽  
Wali Khan Mashwani ◽  
Sharifah Alrajhi ◽  
Sanaa Al-Marzouki ◽  
...  

In this paper, a new generalization of the Generalized Pareto distribution is proposed using the generator suggested in [1], named as Khalil Extended Generalized Pareto (KEGP) distribution. Various shapes of the suggested model and important mathematical properties are investigated that includes moments, quantile function, moment-generating function, measures of entropy, and order statistics. Parametric estimation of the model is discussed using the technique of maximum likelihood. A simulation study is performed for the assessment of the maximum likelihood estimates in terms of their bias and mean squared error using simulated sample estimates. The practical applications are illustrated via two real data sets from survival and reliability theory. The suggested model provided better fits than the other considered models.


2001 ◽  
Vol 38 (A) ◽  
pp. 158-175 ◽  
Author(s):  
Y. Y. Kagan ◽  
F. Schoenberg

The tapered (or generalized) Pareto distribution, also called the modified Gutenberg-Richter law, has been used to model the sizes of earthquakes. Unfortunately, maximum likelihood estimates of the cutoff parameter are substantially biased. Alternative estimates for the cutoff parameter are presented, and their properties discussed.


Sign in / Sign up

Export Citation Format

Share Document