scholarly journals Research on the Pollutant Emission Reduction Strategy and Simulation of Paper-Making Enterprises under the Reward and Punishment Mechanism

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Sen Zhang ◽  
Guangyuan Qin ◽  
Yifan Xie ◽  
Yuan Tian ◽  
Liyuan Shi ◽  
...  

Environmental pollution has become an important obstacle on the path of ecological civilization construction, and it is urgent to control environmental pollution. By establishing an evolutionary game model, this thesis focuses on analyzing how paper-making enterprises choose their own emission reduction strategies under the reward and punishment mechanism. It further analyzes how social welfare changes under the reward and punishment mechanism, and finally through simulation research, this thesis analyzes the evolutionary paths of paper-making enterprises’ pollution emission strategies under the reward and punishment mechanism. The results of the reward and punishment mechanism are as follows: under the static reward and punishment mechanism, the game system will repeatedly oscillate around a point. There is no stable equilibrium point at this time. However, under the dynamic reward and punishment mechanism, the game system will tend to a stable equilibrium point. The results of social welfare analysis show that high-intensity rewards will reduce the amount of pollution discharged by paper-making enterprises, thereby maximizing social welfare. On the contrary, when paper-making enterprises discharge a large amount of pollution, they will be subject to high-intensity penalties. When facing high-intensity punishments, paper-making enterprises will tend to not to discharge. So social welfare is also maximized. The simulation research results show that reasonable punishment strategies are more effective than reward ones. Based on this, the author proposes countermeasures, such as establishing a reasonable reward and punishment mechanism, reasonably determining the reward and punishment intensity for polluting enterprises. The emission reduction strategies of paper-making enterprises will be affected by the government’s reward and punishment mechanism. A deep study of its internal mechanism is not only of great significance for pollution control but also of great significance for the development of a green economy.

1995 ◽  
Vol 21 (2) ◽  
pp. 119-143 ◽  
Author(s):  
Cecilia Albin

A major problem in managing and ultimately resolving many environmental issues, transboundary and global in particular, is how to tackle the fundamental questions of distributive justice and fairness involved. Little systematic reflection and research have been devoted to these issues. The problem of acid rain is a prime example. Strategies to abate acid rain must, among other requirements, be viewed as fair and just if they are to be politically accepted, implemented and honoured in the long term. Research and actual negotiations in this area to date have, by contrast, focused almost exclusively on the generation and analysis of emission reduction strategies which are effective in economic and, more recently, environmental terms.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Christopher Simoson ◽  
John Wagner

Diesel engines are critical in fulfilling transportation and mechanical/electrical power generation needs throughout the world. The engine’s combustion by-products spawn health and environmental concerns, so there is a responsibility to develop emission reduction strategies. However, difficulties arise since the minimization of one pollutant often bears undesirable side effects. Although legislated standards have promoted successful emission reduction strategies for larger engines, developments in smaller displacement engines has not progressed in a similar fashion. In this paper, a reduced-order dynamic model is presented and experimentally validated to demonstrate the use of cooled exhaust gas recirculation (EGR) to alleviate the tradeoff between oxides of nitrogen reduction and performance preservation in a small displacement diesel engine. EGR is an effective method for internal combustion engine oxides of nitrogen (NOx) reduction, but its thermal throttling diminishes power efficiency. The capacity to cool exhaust gases prior to merging with intake air may achieve the desired pollutant effect while minimizing engine performance losses. Representative numerical results were validated with experimental data for a variety of speed, load, and EGR testing scenarios using a 0.697l three-cylinder diesel engine equipped with cooled EGR. Simulation and experimental results showed a 16% drop in NOx emissions using EGR, but experienced a 7% loss in engine torque. However, the use of cooled EGR realized a 23% NOx reduction while maintaining a smaller performance compromise. The concurrence between simulated and experimental trends establishes the simplified model as a predictive tool for diesel engine performance and emission studies. Further, the presented model may be considered in future control algorithms to optimize engine performance and thermal and emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document