scholarly journals Research on the Fatigue of Small Impulse Turbine Blade Based on the Numerical Simulation and Experimental Tests

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shijie Liu ◽  
Guozhu Liang ◽  
Jichao Liu ◽  
Yichuan Yang ◽  
Hui Wang

Reusable spacecraft is increasingly attracting researchers’ attention. However, the experimental investigations on the turbine blade of the rocket engine are rarely published. Thus, the fatigue of a small impulse rocket turbine blade is explored in the current work. First, the specimen and the electrode of electrical discharge machining are carefully designed. Then, the electrical discharge machining is used to machine the specimen. To study the fatigue properties, the finite element analyses are separately performed on the blade model and the specimen. Based on the numerical results, a fatigue test is carried out to reproduce the most vulnerable position. Finally, the microstructural structures of the specimen are detected using the scanning electron microscope (SEM). Results show that (1) different from the aviation field, the specimen is unable to be machined with the welding method because it destroys the crucial details and the mechanical properties; (2) the maximum plastic strain is present at the leading edge close to the hub, at which a 760 μm corner crack appears at the 10113th fatigue cycle. This work provides a feasible method of using the EDM process to machine specimen for the small impulse turbine blade.

Author(s):  
Akash B. Pandey ◽  
Prakash K. Brahmankar ◽  
Harsh S. Purohit

Titanium diboride (TiB2) particles are most popular reinforcement along with tungsten carbide for ferrous matrices for developing composites with high specific modulus, improved wear resistance and hardness while providing good fatigue properties as well. The hardness of such composites poses a problem in conventional machining in terms of very fast wear rates of tools and very high cutting forces. Non-conventional processes like electrical discharge machining (EDM) are very popular for machining of conductive composites like TiB2 reinforced ferrous matrix composites. However, there are a large number of process parameters for EDM which need to be selected and controlled carefully for satisfactory machining performance. Parameter settings which lead to arcing are specifically investigated and avoided as this phenomenon leads to uncontrolled machining through short circuit conditions and large energy discharges. In this paper, an experimental approach to determine the parameter settings which will lead to arcing during EDM machining of TiB2 particulate reinforced ferrous matrix composite is discussed. Values of major EDM process parameters are selected in roughing, intermediate and finishing domains. Experimental trials using L27 design of experiment are conducted and parameter combinations leading to arcing are recorded and the zone of parameters that can lead to arcing is identified.


Author(s):  
Akash B. Pandey ◽  
Prakash K. Brahmankar ◽  
Harsh S. Purohit

Titanium diboride (TiB2) particles are most popular reinforcement along with tungsten carbide for ferrous matrices for developing composites with high specific modulus, improved wear resistance and hardness while providing good fatigue properties as well. The hardness of such composites poses a problem in conventional machining in terms of very fast wear rates of tools and very high cutting forces. Non-conventional processes like electrical discharge machining (EDM) are very popular for machining of conductive composites like TiB2 reinforced ferrous matrix composites. However, there are a large number of process parameters for EDM which need to be selected and controlled carefully for satisfactory machining performance. Parameter settings which lead to arcing are specifically investigated and avoided as this phenomenon leads to uncontrolled machining through short circuit conditions and large energy discharges. In this paper, an experimental approach to determine the parameter settings which will lead to arcing during EDM machining of TiB2 particulate reinforced ferrous matrix composite is discussed. Values of major EDM process parameters are selected in roughing, intermediate and finishing domains. Experimental trials using L27 design of experiment are conducted and parameter combinations leading to arcing are recorded and the zone of parameters that can lead to arcing is identified.


Author(s):  
Jeff Litzler ◽  
Suman Mishra ◽  
Urmila Ghia ◽  
Karman Ghia ◽  
Shichuan Ou

A subsonic, viscous, laminar flow and heat transfer is simulated in the present study over a two-dimensional, isothermal, bluff-body representing a turbine blade leading-edge. The purpose of this simulation is to predict local Frossling number; to determine the accuracy of the predictions as compared to experimental results, and to compare the results from two flow solvers, Fluent and Cobalt. The geometry consists of a half-cylinder of diameter 8.89 cm and a flat after-body, and represents to the model used in the corresponding experimental investigations. The simulations are performed on a multi-block, hybrid grid topology developed using GridGen as the grid generation software. Researchers have earlier investigated heat transfer over a similar model. Utilizing computational modeling techniques, a representative simulation of the physical flow mechanism enables further investigation into the characteristics of the flow. The boundary conditions for the problem are identified as no-slip and isothermal on the bluff body, and uniform velocity is assumed at the inlet. Results are presented in the form of the Frossling number, defined as the Nusselt number divided by the square root of Reynolds number. The results are compared with published experimental data for the experimental geometry described earlier, and the cross-flow-cylinder, to assess the validity of the numerical approaches.


Author(s):  
M Ayeb ◽  
M Frija ◽  
R Fathallah

Laser shock peening is a mechanical surface improvement treatment used to enhance the fatigue life of critical components. This paper investigates the influence of multiple square laser impacts to study their special effect on the diverse mechanical behaviours of the thin leading edge surface of turbine blades. Most works existing in the literature have presented experimental investigations. The originality of our paper is to validate and numerically simulate the proposed model. Indeed, a 3D finite element method of a thin leading edge specimen, Ti–6Al–4V, of a turbine blade is numerically simulated using the ABAQUS software. The mechanical surface modifications (residual stresses, equivalent plastic strains and Johnson–Cook superficial damage) induced by the multiple square laser impact are examined in detail. The main purpose of this investigation is to determine the effects of single-sided and double-sided laser shock peening.


Sign in / Sign up

Export Citation Format

Share Document