scholarly journals Application of an Accurate and Efficient Modeling Approach to a Multiscale Fractured Reservoir in South China Sea

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wei Zhang ◽  
Zong Dai ◽  
Bin Gong ◽  
Yahui Wang ◽  
Xiaolin Zhang ◽  
...  

Carbonate reservoirs in the South China Sea mostly contain natural fractures with various length scales and different intensities, which causes great challenges in efficient reservoir modeling and flow simulation. Existing efforts based on dual-porosity and dual-permeability models could not reflect the characteristics of production data in certain wells. To accurately and efficiently characterize multiscale fractures, a hybrid fracture characterization method is proposed. Firstly, fractures are divided into two types according to the geometrical size and interpretation approach. Then, small-scale fractures, characterized mainly by image log interpretations, are modeled by the traditional dual-porosity/dual-permeability (DP) method. And large-scale fractures, which are characterized by seismic interpretations and dominate the flow regime, are modeled by the embedded discrete fracture method (EDFM) to achieve both accuracy and efficiency. Lastly, transmissibilities among these three types of grid mediums are calculated to generate the hybrid DP+EDFM model for flow simulation. The proposed approach is applied to a carbonate, fractured reservoir in the South China Sea. The overall procedure is fast and reliable, and water cut matches of both field and specific wells are dramatically improved. Comparing the simulation results with the conventional DP model, the proposed approach yields much more accurate predictions on rapid water breakthrough and high water cut in fractured reservoirs.

2019 ◽  
Vol 6 (5) ◽  
pp. 902-913 ◽  
Author(s):  
Pinxian Wang ◽  
Chi-Yue Huang ◽  
Jian Lin ◽  
Zhimin Jian ◽  
Zhen Sun ◽  
...  

Abstract The South China Sea, as ‘a non-volcanic passive margin basin’ in the Pacific, has often been considered as a small-scale analogue of the Atlantic. The recent ocean drilling in the northern South China Sea margin found, however, that the Iberian model of non-volcanic rifted margin from the Atlantic does not apply to the South China Sea. In this paper, we review a variety of rifted basins and propose to discriminate two types of rifting basins: plate-edge type such as the South China Sea and intra-plate type like the Atlantic. They not only differ from each other in structure, formation process, lifespan and geographic size, but also occur at different stages of the Wilson cycle. The intra-plate rifting occurred in the Mesozoic and gave rise to large oceans, whereas the plate-edge rifting took place mainly in the mid-Cenozoic, with three-quarters of the basins concentrated in the Western Pacific. As a member of the Western Pacific system of marginal seas, the South China Sea should be studied not in isolation on its origin and evolution, but in a systematic context to include also its neighboring counterparts.


Sign in / Sign up

Export Citation Format

Share Document