scholarly journals Location Privacy Protection Scheme for LBS in IoT

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hongtao Li ◽  
Xingsi Xue ◽  
Zhiying Li ◽  
Long Li ◽  
Jinbo Xiong

The widespread use of Internet of Things (IoT) technology has promoted location-based service (LBS) applications. Users can enjoy various conveniences brought by LBS by providing location information to LBS. However, it also brings potential privacy threats to location information. Location data that contains private information is often transmitted among IoT networks in LBS, and such privacy information should be protected. In order to solve the problem of location privacy leakage in LBS, a location privacy protection scheme based on k -anonymity is proposed in this paper, in which the Geohash coding model and Voronoi graph are used as grid division principles. We adopt the client-server-to-user (CS2U) model to protect the user’s location data on the client side and the server side, respectively. On the client side, the Geohash algorithm is proposed, which converts the user’s location coordinates into a Geohash code of the corresponding length. On the server side, the Geohash code generated by the user is inserted into the prefix tree, the prefix tree is used to find the nearest neighbors according to the characteristics of the coded similar prefixes, and the Voronoi diagram is used to divide the area units to complete the pruning. Then, using the Geohash coding model and the Voronoi diagram grid division principle, the G-V anonymity algorithm is proposed to find k neighbors in an anonymous area so that the user’s location data meets the k -anonymity requirement in the area unit, thereby achieving anonymity protection of location privacy. Theoretical analysis and experimental results show that our method is effective in terms of privacy and data quality while reducing the time of data anonymity.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jin Wang ◽  
Hao Wu ◽  
Yudian Liu

With the development of mobile communication networks and intelligent terminals, recent years have witnessed a rapid popularization of location-based service (LBS). While obtaining convenient services, the exploitation of mass location data is inevitably leading to a serious concern about location privacy security. Obviously, high quality of service (QoS) will result in poor location privacy protection, so that a trade-off is needed to fulfill users’ individual demands for both sides. Although existing methods perform well in certain scenarios, few have considered the abovementioned balance problem. Therefore, by combiningk-anonymity-based cloaking technique and obfuscation method, a new distributed user-demand-driven (DUDD) location privacy protection scheme is put forward in this paper. The basic idea is still to select a subcloaking area within the cloaking area generated by Location Anonymization Server. Moreover, by using the improved LBS system model, this paper constructs a distributed framework, in which location privacy protection is wholly occupied in server side and LBS provider is only dedicated to QoS-guarantee. In addition, normalized privacy demand and QoS metrics are given and a user-defined weight parameter is introduced to ensure location privacy security without decreasing QoS. The feasibility of the proposed method is proved through simulation.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950147
Author(s):  
Lei Zhang ◽  
Jing Li ◽  
Songtao Yang ◽  
Yi Liu ◽  
Xu Zhang ◽  
...  

The query probability of a location which the user utilizes to request location-based service (LBS) can be used as background knowledge to infer the real location, and then the adversary may invade the privacy of this user. In order to cope with this type of attack, several algorithms had provided query probability anonymity for location privacy protection. However, these algorithms are all efficient just for snapshot query, and simply applying them in the continuous query may bring hazards. Especially that, continuous anonymous locations which provide query probability anonymity in continuous anonymity are incapable of being linked into anonymous trajectories, and then the adversary can identify the real trajectory as well as the real location of each query. In this paper, the query probability anonymity and anonymous locations linkable are considered simultaneously, then based on the Markov prediction, we provide an anonymous location prediction scheme. This scheme can cope with the shortage of the existing algorithms of query probability anonymity in continuous anonymity locations difficult to be linked, and provide query probability anonymity service for the whole process of continuous query, so this scheme can be used to resist the attack of both of statistical attack as well as the infer attack of the linkable. At last, in order to demonstrate the capability of privacy protection in continuous query and the efficiency of algorithm execution, this paper utilizes the security analysis and experimental evaluation to further confirm the performance, and then the process of mathematical proof as well as experimental results are shown.


2019 ◽  
Vol 148 ◽  
pp. 142-150 ◽  
Author(s):  
Hao Wang ◽  
Guangjie Han ◽  
Lina Zhou ◽  
James Adu Ansere ◽  
Wenbo Zhang

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2074 ◽  
Author(s):  
Qiuhua Wang ◽  
Jiacheng Zhan ◽  
Xiaoqin Ouyang ◽  
Yizhi Ren

Wireless Sensor Networks (WSNs) have been widely deployed to monitor valuable objects. In these applications, the sensor node senses the existence of objects and transmitting data packets to the sink node (SN) in a multi hop fashion. The SN is a powerful node with high performance and is used to collect all the information sensed by the sensor nodes. Due to the open nature of the wireless medium, it is easy for an adversary to trace back along the routing path of the packets and get the location of the source node. Once adversaries have got the source node location, they can capture the monitored targets. Thus, it is important to protect the source node location privacy in WSNs. Many methods have been proposed to deal with this source location privacy protection problem, and most of them provide routing path diversity by using phantom node (PN) which is a fake source node used to entice the adversaries away from the actual source node. But in the existing schemes, the PN is determined by the source node via flooding, which not only consumes a lot of communication overhead, but also shortens the safety period of the source node. In view of the above problems, we propose two new grid-based source location privacy protection schemes in WSNs called grid-based single phantom node source location privacy protection scheme (SPS) and grid-based dual phantom node source location privacy protection scheme (DPS) in this paper. Different from the idea of determining the phantom node by the source node in the existing schemes, we propose to use powerful sink node to help the source node to determine the phantom node candidate set (PNCS), from which the source node randomly selects a phantom node acting as a fake source node. We evaluate our schemes through theoretical analysis and experiments. Experimental results show that compared with other schemes, our proposed schemes are more efficient and achieves higher security, as well as keeping lower total energy consumption. Our proposed schemes can protect the location privacy of the source node even in resource-constrained wireless network environments.


2018 ◽  
Vol 189 ◽  
pp. 10013
Author(s):  
Tao Feng ◽  
Xudong Wang ◽  
Xinghua Li

Location based Service (the Location - -based Service, LBS) is a System is to transform the existing mobile communication network, wireless sensor networks, and Global Positioning System (Global Positioning System, GPS) with the combination of information Service mode, the general improvement in Positioning technology and the high popularity of mobile intelligent terminals, led to the growing market of LBS. This article from the perspective of LBS service privacy security, mainly studies the LBS location privacy protection scheme based on cipher text search, in LBS service location privacy and search information privacy issues, focus on to design the scheme, based on the cryptography in LBS service privacy protection issues in the process, this paper fully and secret cipher text search characteristics, design a new privacy protection of LBS service model, and expounds the system structure and working principle of model, defines the security properties of the privacy protection model and security model, Under the specific security assumptions, the new location privacy protection scheme based on lbspp-bse (LBS location privacy protection based on searchable encryption) is implemented.


Author(s):  
Anh Tuan Truong

The development of location-based services and mobile devices has lead to an increase in the location data. Through the data mining process, some valuable information can be discovered from location data. In the other words, an attacker may also extract some private (sensitive) information of the user and this may make threats against the user privacy. Therefore, location privacy protection becomes an important requirement to the success in the development of location-based services. In this paper, we propose a grid-based approach as well as an algorithm to guarantee k-anonymity, a well-known privacy protection approach, in a location database. The proposed approach considers only the information that has significance for the data mining process while ignoring the un-related information. The experiment results show the effectiveness of the proposed approach in comparison with the literature ones.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dongdong Yang ◽  
Baopeng Ye ◽  
Wenyin Zhang ◽  
Huiyu Zhou ◽  
Xiaobin Qian

Protecting location privacy has become an irreversible trend; some problems also come such as system structures adopted by location privacy protection schemes suffer from single point of failure or the mobile device performance bottlenecks, and these schemes cannot resist single-point attacks and inference attacks and achieve a tradeoff between privacy level and service quality. To solve these problems, we propose a k-anonymous location privacy protection scheme via dummies and Stackelberg game. First, we analyze the merits and drawbacks of the existing location privacy preservation system architecture and propose a semitrusted third party-based location privacy preservation architecture. Next, taking into account both location semantic diversity, physical dispersion, and query probability, etc., we design a dummy location selection algorithm based on location semantics and physical distance, which can protect users’ privacy against single-point attack. And then, we propose a location anonymous optimization method based on Stackelberg game to improve the algorithm. Specifically, we formalize the mutual optimization of user-adversary objectives by using the framework of Stackelberg game to find an optimal dummy location set. The optimal dummy location set can resist single-point attacks and inference attacks while effectively balancing service quality and location privacy. Finally, we provide exhaustive simulation evaluation for the proposed scheme compared with existing schemes in multiple aspects, and the results show that the proposed scheme can effectively resist the single-point attack and inference attack while balancing the service quality and location privacy.


Sign in / Sign up

Export Citation Format

Share Document