scholarly journals Geometric Modeling of Rosa roxburghii Fruit Based on Three-Dimensional Point Cloud Reconstruction

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiping Xie ◽  
Yancheng Lang ◽  
Luqi Chen

Fruit three-dimensional (3D) model is crucial to estimating its geometrical and mechanical properties and improving the level of fruit mechanical processing. Considering the complex geometrical features and the required model accuracy, this paper proposed a 3D point cloud reconstruction method for the Rosa roxburghii fruit based on a three-dimensional laser scanner, including 3D point cloud generation, point cloud registration, fruit thorns segmentation, and 3D reconstruction. The 3D laser scanner was used to obtain the original 3D point cloud data of the Rosa roxburghii fruit, and then the fruit thorns data were removed by the segmentation algorithm combining the statistical outlier removal and radius outlier removal. By analyzing the effects of five-point cloud simplification methods, the optimal simplification method was determined. The Poisson reconstruction algorithm, the screened Poisson reconstruction algorithm, the greedy projection triangulation algorithm, and the Delaunay triangulation algorithm were utilized to reconstruct the fruit model. The number of model vertices, the number of facets, and the relative volume error were used to determine the best reconstruction algorithm. The results indicated that this model can better reconstruct the actual surface of Rosa roxburghii fruit. The method provides a reference for the related application.

Author(s):  
K. Zainuddin ◽  
Z. Majid ◽  
M. F. M. Ariff ◽  
K. M. Idris ◽  
M. A. Abbas ◽  
...  

<p><strong>Abstract.</strong> This paper discusses the use of the lightweight multispectral camera to acquire three-dimensional data for rock art documentation application. The camera consists of five discrete bands, used for taking the motifs of the rock art paintings on a big structure of a cave based on the close-range photogrammetry technique. The captured images then processed using commercial structure-from-motion photogrammetry software, which automatically extracts the tie point. The extracted tie points were then used as input to generate a dense point cloud based on the multi-view stereo (MVS) and produced the multispectral 3D model, and orthophotos in a different wavelength. For comparison, the paintings and the wall surface also observed by using terrestrial laser scanner which capable of recording thousands of points in a short period of time with high accuracy. The cloud-to-cloud comparison between multispectral and TLS 3D point cloud show a sub-cm discrepancy, considering the used of the natural features as control target during 3D construction. Nevertheless, the processing also provides photorealistic orthophoto, indicates the advantages of the multispectral camera in generating dense 3D point cloud as TLS, photorealistic 3D model as RGB optic camera, and also with the multiwavelength output.</p>


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 596 ◽  
Author(s):  
Guoxiang Sun ◽  
Xiaochan Wang

Plant morphological data are an important basis for precision agriculture and plant phenomics. The three-dimensional (3D) geometric shape of plants is complex, and the 3D morphology of a plant changes relatively significantly during the full growth cycle. In order to make high-throughput measurements of the 3D morphological data of greenhouse plants, it is necessary to frequently adjust the relative position between the sensor and the plant. Therefore, it is necessary to frequently adjust the Kinect sensor position and consequently recalibrate the Kinect sensor during the full growth cycle of the plant, which significantly increases the tedium of the multiview 3D point cloud reconstruction process. A high-throughput 3D rapid greenhouse plant point cloud reconstruction method based on autonomous Kinect v2 sensor position calibration is proposed for 3D phenotyping greenhouse plants. Two red–green–blue–depth (RGB-D) images of the turntable surface are acquired by the Kinect v2 sensor. The central point and normal vector of the axis of rotation of the turntable are calculated automatically. The coordinate systems of RGB-D images captured at various view angles are unified based on the central point and normal vector of the axis of the turntable to achieve coarse registration. Then, the iterative closest point algorithm is used to perform multiview point cloud precise registration, thereby achieving rapid 3D point cloud reconstruction of the greenhouse plant. The greenhouse tomato plants were selected as measurement objects in this study. Research results show that the proposed 3D point cloud reconstruction method was highly accurate and stable in performance, and can be used to reconstruct 3D point clouds for high-throughput plant phenotyping analysis and to extract the morphological parameters of plants.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3493
Author(s):  
Gahyeon Lim ◽  
Nakju Doh

Remarkable progress in the development of modeling methods for indoor spaces has been made in recent years with a focus on the reconstruction of complex environments, such as multi-room and multi-level buildings. Existing methods represent indoor structure models as a combination of several sub-spaces, which are constructed by room segmentation or horizontal slicing approach that divide the multi-room or multi-level building environments into several segments. In this study, we propose an automatic reconstruction method of multi-level indoor spaces with unique models, including inter-room and inter-floor connections from point cloud and trajectory. We construct structural points from registered point cloud and extract piece-wise planar segments from the structural points. Then, a three-dimensional space decomposition is conducted and water-tight meshes are generated with energy minimization using graph cut algorithm. The data term of the energy function is expressed as a difference in visibility between each decomposed space and trajectory. The proposed method allows modeling of indoor spaces in complex environments, such as multi-room, room-less, and multi-level buildings. The performance of the proposed approach is evaluated for seven indoor space datasets.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
Romina Dastoorian ◽  
Ahmad E. Elhabashy ◽  
Wenmeng Tian ◽  
Lee J. Wells ◽  
Jaime A. Camelio

With the latest advancements in three-dimensional (3D) measurement technologies, obtaining 3D point cloud data for inspection purposes in manufacturing is becoming more common. While 3D point cloud data allows for better inspection capabilities, their analysis is typically challenging. Especially with unstructured 3D point cloud data, containing coordinates at random locations, the challenges increase with higher levels of noise and larger volumes of data. Hence, the objective of this paper is to extend the previously developed Adaptive Generalized Likelihood Ratio (AGLR) approach to handle unstructured 3D point cloud data used for automated surface defect inspection in manufacturing. More specifically, the AGLR approach was implemented in a practical case study to inspect twenty-seven samples, each with a unique fault. These faults were designed to cover an array of possible faults having three different sizes, three different magnitudes, and located in three different locations. The results show that the AGLR approach can indeed differentiate between non-faulty and a varying range of faulty surfaces while being able to pinpoint the fault location. This work also serves as a validation for the previously developed AGLR approach in a practical scenario.


Author(s):  
Yawar Rehman ◽  
Hafiz M. Ameem Uddin ◽  
Taha Hasan Masood Siddique ◽  
Haris ◽  
Syed Riaz Un Nabi Jafri ◽  
...  

Author(s):  
Ravinder Singh ◽  
Archana Khurana ◽  
Sunil Kumar

Purpose This study aims to develop an optimized 3D laser point reconstruction using Descent Gradient algorithm. Precise and accurate reconstruction of 3D laser point cloud of the complex environment/object is a key solution for many industries such as construction, gaming, automobiles, aerial navigation, architecture and automation. A 2D laser scanner along with a servo motor/pan tilt/inertial measurement unit is used for generating 3D point cloud (either environment/object or both) by acquiring the real-time data from sensors. However, while generating the 3D laser point cloud, various problems related to time synchronization problem between laser and servomotor and torque variation in servomotors arise, which causes misalignment in stacking the 2D laser scan for generating the 3D point cloud of the environment. Because of the misalignment in stacking, the 2D laser scan corresponding to the erroneous angular and position information by the servomotor and the 3D laser point cloud become distorted in terms of inconsistency for measuring the dimension of the objects. Design/methodology/approach This paper addresses a modified 3D laser system assembled from a 2D laser scanner coupled with a servomotor (dynamixel motor) for developing an efficient 3D laser point cloud with the implementation of an optimization technique: descent gradient filter (DGT). The proposed approach reduces the cost function (error) in the angular and position coordinates of the servo motor caused because of torque variation and time synchronization, which resulted in enhancing the accuracy in 3D point cloud mapping for the accurate measurement of the object’s dimensions. Findings Various real-world experiments are performed with the proposed DGT filter linked with laser scanner and servomotor and an improvement of 6.5 per cent in measuring the accurate dimension of object is obtained while comparing with conventional approaches for generating a 3D laser point cloud. Originality/value This proposed technique may be applicable for various industrial applications that are based on robotics arms (such as painting, welding and cutting) in the automobile industry, the optimized measurement of object, efficient mobile robot navigation, precise 3D reconstruction of environment/object in construction, architecture applications, airborne applications and aerial navigation.


Sign in / Sign up

Export Citation Format

Share Document