scholarly journals 3D MODELING FOR ROCK ART DOCUMENTATION USING LIGHTWEIGHT MULTISPECTRAL CAMERA

Author(s):  
K. Zainuddin ◽  
Z. Majid ◽  
M. F. M. Ariff ◽  
K. M. Idris ◽  
M. A. Abbas ◽  
...  

<p><strong>Abstract.</strong> This paper discusses the use of the lightweight multispectral camera to acquire three-dimensional data for rock art documentation application. The camera consists of five discrete bands, used for taking the motifs of the rock art paintings on a big structure of a cave based on the close-range photogrammetry technique. The captured images then processed using commercial structure-from-motion photogrammetry software, which automatically extracts the tie point. The extracted tie points were then used as input to generate a dense point cloud based on the multi-view stereo (MVS) and produced the multispectral 3D model, and orthophotos in a different wavelength. For comparison, the paintings and the wall surface also observed by using terrestrial laser scanner which capable of recording thousands of points in a short period of time with high accuracy. The cloud-to-cloud comparison between multispectral and TLS 3D point cloud show a sub-cm discrepancy, considering the used of the natural features as control target during 3D construction. Nevertheless, the processing also provides photorealistic orthophoto, indicates the advantages of the multispectral camera in generating dense 3D point cloud as TLS, photorealistic 3D model as RGB optic camera, and also with the multiwavelength output.</p>

2019 ◽  
Vol 9 (18) ◽  
pp. 3884 ◽  
Author(s):  
Dabove ◽  
Grasso ◽  
Piras

The geomatic survey in the speleological field is one of the main activities that allows for the adding of both a scientific and popular value to cave exploration, and it is of fundamental importance for a detailed knowledge of the hypogean cavity. Today, the available instruments, such as laser scanners and metric cameras, allow us to quickly acquire data and obtain accurate three-dimensional models, but they are still expensive, require a careful planning phase of the survey, as well as some operator experience for their management. This work analyzes the performance of a smartphone device for a close-range photogrammetry approach for the extraction of accurate three-dimensional information of an underground cave. The image datasets that were acquired with a high-end smartphone were processed using the Structure from Motion (SfM)-based approach for dense point cloud generation: different image-matching algorithms implemented in a commercial and an open source software and in a smartphone application were tested. In order to assess the reachable accuracy of the proposed procedure, the achieved results were compared with a reference dense point cloud obtained with a professional camera or a terrestrial laser scanner. The approach has shown a good performance in terms of geometrical accuracies, computational time and applicability.


2018 ◽  
Vol 63 ◽  
pp. 00010
Author(s):  
Izabela Piech ◽  
Boguslawa Kwoczynska ◽  
Artur Ciszewski

The aim of the study was to recreate, in the form of a 3D model, the Citadel fort No. 33 “Krakus” in Krakow. The data on the basis of which the three-dimensional model was made were obtained using a Leica ScanStation P40 terrestrial laser scanner, which is owned by the Faculty of Environmental Engineering and Geodesy of the University of Agriculture Hugona Kollataj in Krakow. The scope of field work included performing laser measurements, and then processing the point cloud in the Leica Cyclone 3D program and creating a full architectural model in SketchUp 2016.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5220
Author(s):  
Shima Sahebdivani ◽  
Hossein Arefi ◽  
Mehdi Maboudi

The expansion of the railway industry has increased the demand for the three-dimensional modeling of railway tracks. Due to the increasing development of UAV technology and its application advantages, in this research, the detection and 3D modeling of rail tracks are investigated using dense point clouds obtained from UAV images. Accordingly, a projection-based approach based on the overall direction of the rail track is proposed in order to generate a 3D model of the railway. In order to extract the railway lines, the height jump of points is evaluated in the neighborhood to select the candidate points of rail tracks. Then, using the RANSAC algorithm, line fitting on these candidate points is performed, and the final points related to the rail are identified. In the next step, the pre-specified rail piece model is fitted to the rail points through a projection-based process, and the orientation parameters of the model are determined. These parameters are later improved by fitting the Fourier curve, and finally a continuous 3D model for all of the rail tracks is created. The geometric distance of the final model from rail points is calculated in order to evaluate the modeling accuracy. Moreover, the performance of the proposed method is compared with another approach. A median distance of about 3 cm between the produced model and corresponding point cloud proves the high quality of the proposed 3D modeling algorithm in this study.


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiping Xie ◽  
Yancheng Lang ◽  
Luqi Chen

Fruit three-dimensional (3D) model is crucial to estimating its geometrical and mechanical properties and improving the level of fruit mechanical processing. Considering the complex geometrical features and the required model accuracy, this paper proposed a 3D point cloud reconstruction method for the Rosa roxburghii fruit based on a three-dimensional laser scanner, including 3D point cloud generation, point cloud registration, fruit thorns segmentation, and 3D reconstruction. The 3D laser scanner was used to obtain the original 3D point cloud data of the Rosa roxburghii fruit, and then the fruit thorns data were removed by the segmentation algorithm combining the statistical outlier removal and radius outlier removal. By analyzing the effects of five-point cloud simplification methods, the optimal simplification method was determined. The Poisson reconstruction algorithm, the screened Poisson reconstruction algorithm, the greedy projection triangulation algorithm, and the Delaunay triangulation algorithm were utilized to reconstruct the fruit model. The number of model vertices, the number of facets, and the relative volume error were used to determine the best reconstruction algorithm. The results indicated that this model can better reconstruct the actual surface of Rosa roxburghii fruit. The method provides a reference for the related application.


Author(s):  
B. Alsadik ◽  
M. Gerke ◽  
G. Vosselman

The ongoing development of advanced techniques in photogrammetry, computer vision (CV), robotics and laser scanning to efficiently acquire three dimensional geometric data offer new possibilities for many applications. The output of these techniques in the digital form is often a sparse or dense point cloud describing the 3D shape of an object. Viewing these point clouds in a computerized digital environment holds a difficulty in displaying the visible points of the object from a given viewpoint rather than the hidden points. This visibility problem is a major computer graphics topic and has been solved previously by using different mathematical techniques. However, to our knowledge, there is no study of presenting the different visibility analysis methods of point clouds from a photogrammetric viewpoint. The visibility approaches, which are surface based or voxel based, and the hidden point removal (HPR) will be presented. Three different problems in close range photogrammetry are presented: camera network design, guidance with synthetic images and the gap detection in a point cloud. The latter one introduces also a new concept of gap classification. Every problem utilizes a different visibility technique to show the valuable effect of visibility analysis on the final solution.


2020 ◽  
Vol 5 (14) ◽  
pp. 203-209
Author(s):  
Nik Umar Solihin Nik Kamaruzaman ◽  
Afiqah Ahmad ◽  
Norlina Mohamed Noor

The traditional Baruk in Sarawak has gone through some architectural changes in terms of its material and function due to the urban modernization and safety concern. Therefore, the research aims to construct the Three-Dimensional (3D) model of the building using digital close-range photogrammetry. The exploratory study can be categorized into four phases consist of Site Selection; Data Acquisition; Data Processing; and 3D Modelling. The 3D model generated from the photogrammetry software presents the result of the dense point clouds. The study could give fundamental guidelines on using a mobile device in digital close-range photogrammetry techniques. Keywords: Digital construction; traditional architecture, digital close-range photogrammetry, heritage documentation. eISSN: 2398-4287© 2020. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v5i14.2243


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Sign in / Sign up

Export Citation Format

Share Document