scholarly journals Online Teaching Wireless Video Stream Resource Dynamic Allocation Method considering Node Ability

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jingrong Lu ◽  
Hongtao Gao

At present, wireless network technology is advancing rapidly, and intelligent equipment is gradually popularized, which rapidly developed the mobile streaming media business. All kinds of mobile video applications have enriched people’s lives by carrying huge traffic randomly. Wireless networks (WNs) are facing an unprecedented burden, which allocates very important wireless video resources. Similarly, in WNs, the network status is dynamic and the terminal is heterogeneous, which causes the traditional video transmission system to fail to meet the needs of users. Hence, Scalable Video Coding (SVC) has been introduced in the video transmission system to achieve bit rate adaptation. However, in a strictly hierarchical traditional computer network, the wireless resource allocation strategy usually takes throughput as the only way to optimize the target, and it is terrible to make more optimizations for scalable video transmission. This article proposed a cross-layer design to enable information to be transmitted between the wireless base station and the video server to achieve joint optimization. To improve users’ satisfaction with video services, the wireless resource allocation problem and the video stream scheduling problem are jointly considered, which keep the optimization space larger. Based on the proposed architecture, we further study the design of wireless resource allocation algorithms and rate-adaptive algorithms for the scenario of multiuser transmission of scalable video in the Long-Term Evolution (LTE) downlink. Experimental outcomes have shown substantial performance enhancement of the proposed work.

2019 ◽  
Vol 64 (4) ◽  
pp. 373-382
Author(s):  
Bennet Hensen ◽  
Urte Kägebein ◽  
Marcel Gutberlet ◽  
Kristina I. Ringe ◽  
Van Dai Vo-Chieu ◽  
...  

Abstract Purpose To analyze the interference between a wireless high definition multimedia interface (WHDMI) and magnetic resonance imaging (MRI) image quality at 1.5T, 3T and 7T. Materials and methods A wireless video transmission system (WVTS) consisting of a WHDMI and a projector was used to transmit and display a video stream into the magnet room. MR image quality was analyzed at 1.5T, 3T and 7T. Signal-to-noise-ratio $(\overline {{\rm{SNR}}} )$ and radio frequency (RF)-noise spectrum were measured at three transmitter positions (A: inside the cabin, B: in front of the waveguide and C: in the control room). WVTS system functionality tests included measurements of reliability, delay and image quality. Results With the WVTS mean $\overline {{\rm{SNR}}} $ values significantly decreased in comparison to the reference for all positions and fieldstrenghts, while the spectra’s baseline is elevated at 1.5T and 3T. Peaks related to continuous wave interferences are apparent at all field strenghts. For WHDMI alone mean $\overline {{\rm{SNR}}} $ values were stable without significant differences to the reference. No elevation of the spectra’s baseline could be observed. Functionality measurements confirmed high connection reliability with stable image quality and no delays for all field strengths. Conclusion We conclude that wireless transmission of video streams into the MRI magnet room is feasible at all field strengths without hampering image quality.


Sign in / Sign up

Export Citation Format

Share Document