Wireless video transmission into the MRI magnet room: implementation and evaluation at 1.5T, 3T and 7T

2019 ◽  
Vol 64 (4) ◽  
pp. 373-382
Author(s):  
Bennet Hensen ◽  
Urte Kägebein ◽  
Marcel Gutberlet ◽  
Kristina I. Ringe ◽  
Van Dai Vo-Chieu ◽  
...  

Abstract Purpose To analyze the interference between a wireless high definition multimedia interface (WHDMI) and magnetic resonance imaging (MRI) image quality at 1.5T, 3T and 7T. Materials and methods A wireless video transmission system (WVTS) consisting of a WHDMI and a projector was used to transmit and display a video stream into the magnet room. MR image quality was analyzed at 1.5T, 3T and 7T. Signal-to-noise-ratio $(\overline {{\rm{SNR}}} )$ and radio frequency (RF)-noise spectrum were measured at three transmitter positions (A: inside the cabin, B: in front of the waveguide and C: in the control room). WVTS system functionality tests included measurements of reliability, delay and image quality. Results With the WVTS mean $\overline {{\rm{SNR}}} $ values significantly decreased in comparison to the reference for all positions and fieldstrenghts, while the spectra’s baseline is elevated at 1.5T and 3T. Peaks related to continuous wave interferences are apparent at all field strenghts. For WHDMI alone mean $\overline {{\rm{SNR}}} $ values were stable without significant differences to the reference. No elevation of the spectra’s baseline could be observed. Functionality measurements confirmed high connection reliability with stable image quality and no delays for all field strengths. Conclusion We conclude that wireless transmission of video streams into the MRI magnet room is feasible at all field strengths without hampering image quality.

2014 ◽  
Vol 1006-1007 ◽  
pp. 723-726
Author(s):  
Shi Yu Huan

Along with the rapid expansion of automation, communication, the Internet of things technology, and video image processing technology, the wireless video transmission technology based on the embedded system is becoming increasingly more mature. In this paper, what has been designed and managed to be perfectly applied is a transmission system of high reliability and convenience which based on the technique of pan-tilt control and integrated the technology of wireless LAN, embedded technology, video transmission technology. The paper briefly introduces the research background of the system, current research status at home and abroad, the development trend and the significance of this design project. What is more is that the article goes through the hardware and software design of the pan-tilt control circuit and software of real-time video transmission in a detailed way. The biggest is that this project has made the real-time video transmission in the local area network came true and you can check the real-time dynamic video images by browsing the web through you mobile phone.


Author(s):  
Christos Bouras ◽  
Vassilis Papapanagiotou ◽  
Kostas Stamos ◽  
Giannis Zaoudis

The subject of this chapter is to present the TFRC (TCP-Friendly Rate Control) protocol in the area of efficient wireless video transmission and its possible usage in cross-layer power management mechanisms. The basic aspects of TFRC operation are presented, along with the suitability of TFRC usage for video transmission. The chapter examines related work and presents several mechanisms for efficient wireless video transmission using TFRC that have been proposed. These mechanisms utilize cross-layer approaches for adaptation of the power transmission level of the sender and TFRC feedback information regarding the wireless connection status from the receiver for improved transmission statistics, and therefore user experience, without unnecessary power consumption.


Sign in / Sign up

Export Citation Format

Share Document