scholarly journals The Effects of Boron Derivatives on Lipid Absorption from the Intestine and on Bile Lipids and Bile Acids of Sprague Dawley Rats

1995 ◽  
Vol 2 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Iris H. Hall ◽  
David J. Reynolds ◽  
O. T. Wong ◽  
A. Sood ◽  
B. F. Spielvogel

N,N-dimethyl-n-octadecylamine borane 1¯ at 8 mg/kg/day, tetrakis-u-(trimethylamine boranecarboxylato)-bis(trimethyl-carboxyborane)-dicopper(II) 2¯ at 2.5 mg/kg/day and trimethylamine-carboxyborane 3¯ at 8 mg/kg/day were evaluated for their effects on bile lipids, bile acids, small intestinal absorption of cholesterol and cholic acid and liver and small intestinal enzyme activities involved in lipid metabolism. The agent administered orally elevated rat bile excretion of lipids, e.g. cholesterol and phospholipids, and compounds 2¯ and 3¯ increased the bile flow rate. These agents altered the composition of the bile acids, but there was no significant increase in lithocholic acid which is most lithogenic agent in rats. The three agents did decrease cholesterol absorption from isolated in situ intestinal duodenum loops in the presence of drug. Hepatic and small intestinal mucosa enzyme activities, e.g. ATP-dependent citrate lyase, acyl CoA cholesterol acyl transferase, cholsterol-7-α -hydroxylase, sn glycerol-3-phosphate acyl transferase, phosphatidylate phosphohydrolase, and lipoprotein lipase, were reduced. However, the boron derivatives 1¯ and 3¯ decreased hepatic HMG-CoA reductase activity, the regulatory enzyme for cholesterol synthesis, but the compounds had no effects on small intestinal mucosa HMG-CoA reductase activity. There was no evidence of hepatic cell damage afforded by the drugs based on clinical chemistry values which would induce alterations in bile acid concentrations after treatment of the rat.

1983 ◽  
Vol 103 (9) ◽  
pp. 986-990
Author(s):  
RYO MURATA ◽  
NOBORU HIKICHI ◽  
HIROSHI NIWA

1990 ◽  
Vol 79 (6) ◽  
pp. 663-668 ◽  
Author(s):  
D. J. Haines ◽  
C. H. J. Swan ◽  
J. R. B. Green ◽  
J. F. Woodley

1. The activities of nine peptide hydrolases and three non-peptidase brush-border marker enzymes have been quantified in crude homogenates prepared from the proximal, mid and distal regions of small-intestinal mucosa for sham-operated (n = 9) and uraemic (n = 14) rats. Abnormalities in enzyme activities were observed in all regions studied in the uraemic group, although no reduction in food intake occurred. 2. The proximal region of the small intestine from uraemic rats showed a general fall in enzyme activities associated with the brush-border. This fall was combined with a decline in mucosal protein content. In contrast, the mid and distal regions showed increased activity against the dipeptide tyrosyl-glycine. 3. It is proposed that the fall in brush-border enzyme activities in the proximal small intestine of uraemic rats is a response to the increased water intake associated with this, and presumably other, rat models of uraemia. The increased enzyme activity against tyrosyl-glycine found in the mid and distal regions of the small intestine of uraemic rats may be caused by an increased small-intestinal transit rate, but could be an attempt to maximize tyrosine absorption in response to decreased plasma tyrosine levels. 4. This study casts doubt on specific activities being the most useful units of enzyme activity, when measured in crude homogenates prepared from the proximal small intestine of uraemic rats. It also demonstrates that enzyme activities measured at a single site in the small intestine of uraemic rats may not be representative of the enzymatic changes occurring in the small-intestinal mucosa as a whole.


2009 ◽  
Vol 102 (9) ◽  
pp. 1285-1296 ◽  
Author(s):  
Maud Le Gall ◽  
Mélanie Gallois ◽  
Bernard Sève ◽  
Isabelle Louveau ◽  
Jens J. Holst ◽  
...  

Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11–12 d) weaning and SB before and after weaning (for 35–36 d). Growth performance, feed intake and various end-point indices of GIT anatomy and physiology were investigated at slaughter. The pigs supplemented with SB before weaning grew faster after weaning than the controls (P < 0·05). The feed intake was higher in pigs supplemented with SB before or after weaning (P < 0·05). SB provided before weaning improved post-weaning faecal digestibility (P < 0·05) while SB after weaning decreased ileal and faecal digestibilities (P < 0·05). Gastric digesta retention was higher when SB was provided before weaning (P < 0·05). Post-weaning administration of SB decreased the activity of three pancreatic enzymes and five intestinal enzymes (P < 0·05). IL-18 gene expression tended to be lower in the mid-jejunum in SB-supplemented pigs. The small-intestinal mucosa was thinner and jejunal villous height lower in all SB groups (P < 0·05). In conclusion, the pre-weaning SB supplementation was the most efficient to stimulate body growth and feed intake after weaning, by reducing gastric emptying and intestinal mucosa weight and by increasing feed digestibility.


1984 ◽  
Vol 259 (4) ◽  
pp. 2452-2456 ◽  
Author(s):  
M C Blaufuss ◽  
J I Gordon ◽  
G Schonfeld ◽  
A W Strauss ◽  
D H Alpers

Sign in / Sign up

Export Citation Format

Share Document